GitLab MCP Server

GitLab MCP Server

Enables interaction with GitLab repositories through natural language, supporting project management, issue tracking, merge requests, file access, and repository operations. Includes a conversational agent interface with structured outputs for comprehensive GitLab workflow automation.

Category
访问服务器

README

GitLab MCP Server

A Model Context Protocol (MCP) server for interacting with GitLab repositories, issues, merge requests, and more.

Features

  • List and get project details
  • Manage issues (list, create)
  • Manage merge requests (list, create)
  • Access repository files
  • List branches and commits
  • User information

Installation

  1. Install the required dependencies:
pip install -r requirements.txt
  1. Set up your GitLab access token:
export GITLAB_TOKEN="your-gitlab-token"
# Optional: for self-hosted GitLab
export GITLAB_URL="https://gitlab.example.com"

Usage

Option 1: Run as MCP Server

Run the server directly:

python server.py

Option 2: Use with LangGraph Agent (Recommended)

The gitlab_agent.py provides a high-level interface using LangGraph's ReAct agent:

import asyncio
from gitlab_agent import GitLabAgent

async def main():
    # Initialize the agent
    agent = GitLabAgent()
    
    # Simple invoke
    response = await agent.invoke("Show me my GitLab projects")
    
    # Structured output
    structured = await agent.invoke_structured(
        "Create an issue titled 'Fix bug' in project 12345"
    )
    print(structured.user_output)
    print(structured.action_taken)
    print(structured.resource_url)
    
    # Clean up
    await agent.aclose()

asyncio.run(main())

Option 3: Interactive Examples

Run the interactive example script:

python example_usage.py

This provides a menu with various examples:

  • List projects
  • Create issues
  • Manage merge requests
  • Browse repository files
  • Conversational mode

Available Tools

get_project

Get details about a specific GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project

list_issues

List issues in a GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project
  • state (optional): Filter by state (opened, closed, all)

create_issue

Create a new issue in a GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project
  • title (required): The title of the issue
  • description (optional): The description of the issue
  • labels (optional): Comma-separated list of label names

list_merge_requests

List merge requests in a GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project
  • state (optional): Filter by state (opened, closed, merged, all)

create_merge_request

Create a new merge request in a GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project
  • source_branch (required): The source branch name
  • target_branch (required): The target branch name
  • title (required): The title of the merge request
  • description (optional): The description of the merge request

get_file_content

Get the content of a file from a GitLab repository.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project
  • file_path (required): The path to the file in the repository
  • ref (optional): The branch, tag, or commit SHA (default: main)

list_branches

List branches in a GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project

list_commits

List commits in a GitLab project.

Parameters:

  • project_id (required): The ID or URL-encoded path of the project
  • ref_name (optional): The name of a branch, tag, or commit SHA

Resources

  • gitlab://projects: List of accessible GitLab projects
  • gitlab://user: Information about the authenticated user

Configuration

Set the following environment variables:

  • GITLAB_TOKEN (required): Your GitLab personal access token
  • GITLAB_URL (optional): GitLab instance URL (default: https://gitlab.com)
  • OPENAI_API_KEY (required for agent): Your OpenAI API key

Getting a GitLab Token

  1. Go to your GitLab instance (gitlab.com or your self-hosted instance)
  2. Navigate to Settings > Access Tokens
  3. Create a personal access token with the following scopes:
    • api - Access the API
    • read_repository - Read repository content
    • write_repository - Write to repository (if needed)

Agent Architecture

The GitLab Agent uses:

  • LangGraph: For the ReAct agent framework
  • LangChain: For LLM integration (OpenAI)
  • MCP Client: To connect to the GitLab MCP server
  • Structured Outputs: Using Pydantic models for reliable response parsing

Agent Features

  • 🔄 Conversational: Maintains context across multiple interactions
  • 🎯 Tool Selection: Automatically selects the right GitLab tools
  • 📊 Structured Outputs: Returns typed, validated responses
  • 🔍 Logging: Detailed logging of all operations
  • 💾 Checkpointing: Saves conversation state

Example Agent Interactions

# List projects
await agent.invoke("What GitLab projects do I have access to?")

# Get project info
await agent.invoke("Tell me about project 12345")

# Create an issue
await agent.invoke_structured(
    "Create a bug report in project myuser/myrepo titled 'Login fails'"
)

# List merge requests
await agent.invoke("Show me open merge requests in project 12345")

# Get file content
await agent.invoke("Show me the README.md file from project 12345")

Files

  • server.py - Main MCP server implementation
  • gitlab_agent.py - LangGraph agent wrapper
  • example_usage.py - Interactive examples
  • requirements.txt - MCP server dependencies
  • requirements-agent.txt - Agent dependencies
  • .env.example - Environment variable template

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选