gitSERVER README Manager

gitSERVER README Manager

Enables automated README file management for development projects through MCP tools for content creation and summarization, resources for direct file access, and prompts for AI-powered documentation analysis.

Category
访问服务器

README

gitSERVER - MCP Server for README Management

A Model Context Protocol server for managing README files in development projects.

Overview

gitSERVER is a FastMCP-based server that streamlines README file management through the Model Context Protocol. It provides automated README creation, content generation, summarization, and MCP client integration.

Features

  • Automatic README file creation when files do not exist
  • Content management with append functionality
  • README content summarization and analysis
  • MCP resource integration for content access
  • Intelligent prompt generation for README analysis
  • Robust error handling with fallback mechanisms

Installation

Prerequisites

  • Python 3.7 or higher
  • FastMCP library

Setup Steps

  1. Install dependency: pip install fastmcp
  2. Save main.py to your project directory
  3. Start the server: python main.py

Usage

MCP Tools

create_file(response: str)

  • Purpose: Generate and append content to README file
  • Parameter: response (string) - content to add to README
  • Returns: Confirmation message
  • Use case: Adding structured documentation content

sumamrize_readme()

  • Purpose: Read complete README file content
  • Parameters: None
  • Returns: Full README content or empty file message
  • Use case: Content review and analysis

MCP Resources

README://content

  • Provides direct access to README file content
  • Uses MCP resource access pattern
  • Allows MCP clients to fetch README content

MCP Prompts

readme_summary()

  • Generates prompts for README summarization
  • Returns contextual prompt or empty file message
  • Detects empty files automatically

Project Structure

your-project/ main.py (MCP server implementation) README.md (Auto-generated README file) other-files (Your project files)

How It Works

File Management

  1. Detects existing README.md files in project directory
  2. Creates empty README.md if none exists
  3. Safely appends new content while preserving existing data
  4. Ensures all file operations complete successfully

MCP Integration

  • Tools: Direct function calls for README operations
  • Resources: Resource-based README content access
  • Prompts: Contextual prompt generation for AI interactions

Technical Details

File Operations

  • Safe file handling with proper open/close operations
  • Content stripping to remove unnecessary whitespace
  • Fallback messages for empty or missing files

Error Handling

  • Creates README.md automatically when needed
  • Returns user-friendly messages for empty content
  • Handles file operation exceptions gracefully

API Reference

Tool Functions:

  • create_file(response): Append content to README
  • sumamrize_readme(): Retrieve README content

Resource Endpoints:

  • README://content: Direct README content access

Prompt Generators:

  • readme_summary(): Context-aware README summarization

Use Cases

  • Documentation automation and maintenance
  • README content analysis for improvements
  • New project setup with proper documentation
  • MCP workflow integration for README management

Development

Contributing

  1. Fork the repository
  2. Create feature branch
  3. Implement changes
  4. Test with MCP clients
  5. Submit pull request

Testing Requirements

Test that your MCP client can:

  • Call create_file tool successfully
  • Retrieve content via sumamrize_readme
  • Access README://content resource
  • Generate prompts with readme_summary

Compatibility

  • MCP Protocol: Standard MCP client compatible
  • Python: Requires version 3.7 or higher
  • Dependencies: Only requires FastMCP library

License

Open source project. Check repository for license details.

Support

For issues or questions:

  • Check project repository for existing issues
  • Create new issues for bugs or features
  • Refer to FastMCP documentation for MCP questions

Note: This is a Model Context Protocol server. You need an MCP-compatible client to interact with the server effectively.

Google Gemini PDF Chatbot

A Streamlit web application for uploading PDF documents and asking questions about their content using Google Gemini AI.

Overview

This chatbot application uses Google Gemini 1.5 Flash model to provide intelligent question-answering for uploaded PDF documents. Users upload PDF files, the app processes content, and allows questions about the document.

Features

  • PDF Upload Support: Upload and process PDF documents
  • Text Extraction: Automatically extracts text from PDF files
  • Intelligent Chunking: Splits large documents into manageable chunks
  • AI-Powered Q&A: Uses Google Gemini 1.5 Flash for accurate answers
  • Interactive Web Interface: Clean Streamlit interface
  • Real-time Processing: Instant responses to user queries

Installation

Prerequisites

  • Python 3.7 or higher
  • Google API key for Gemini AI
  • Required Python packages

Setup Instructions

  1. Clone repository and navigate to project directory

  2. Install dependencies: pip install streamlit python-dotenv PyPDF2 langchain langchain-google-genai

  3. Create .env file in project root: GOOGLE_API_KEY=your_google_api_key_here

  4. Get Google API Key:

    • Visit Google AI Studio or Google Cloud Console
    • Create or select project
    • Enable Gemini API
    • Generate API key and add to .env file

Usage

Running the Application

  1. Start Streamlit app: streamlit run app.py

  2. Access application:

    • Open web browser
    • Navigate to http://localhost:8501

Using the Chatbot

  1. Upload Document:

    • Click file uploader
    • Select PDF file
    • Wait for processing
  2. Ask Questions:

    • Type question in text input field
    • Press Enter
    • AI analyzes document and provides answer

Supported File Types

  • PDF files (.pdf) - Fully implemented
  • Text files (.txt) - Declared support
  • Word documents (.docx) - Declared support

Technical Architecture

Core Components

  1. Streamlit Frontend: Web interface for uploads and interaction
  2. PDF Processing: PyPDF2 extracts text from documents
  3. Text Chunking: LangChain CharacterTextSplitter breaks large texts
  4. AI Integration: Connects to Google Gemini via LangChain
  5. Question Answering: LangChain QA chain for document-based answers

Processing Flow

  1. User uploads PDF document
  2. Application extracts text from all pages
  3. Text split into chunks (1000 chars with 200 char overlap)
  4. Chunks converted to LangChain Document objects
  5. User submits question
  6. QA chain processes question against document chunks
  7. Gemini AI generates and returns answer

Configuration

Environment Variables

  • GOOGLE_API_KEY: Your Google API key for Gemini AI services

Text Splitter Settings

  • Chunk Size: 1000 characters
  • Chunk Overlap: 200 characters
  • Separator: Newline character

AI Model Configuration

  • Model: Google Gemini 1.5 Flash
  • Chain Type: stuff (processes all chunks together)

Project Structure

project/ app.py (Main Streamlit application) .env (Environment variables - not in repo) requirements.txt (Python dependencies) README.md (Project documentation)

Dependencies

Required Python Packages:

  • streamlit: Web application framework
  • python-dotenv: Environment variable management
  • PyPDF2: PDF text extraction
  • langchain: AI application framework
  • langchain-google-genai: Google Gemini integration

Installation: pip install streamlit python-dotenv PyPDF2 langchain langchain-google-genai

Troubleshooting

Common Issues

  1. API Key Errors:

    • Ensure Google API key is correctly set in .env file
    • Verify API key has access to Gemini AI services
  2. PDF Processing Issues:

    • Some PDFs may have text as images (not supported)
    • Encrypted PDFs may require additional handling
  3. Memory Issues:

    • Large PDF files may consume significant memory
    • Consider file size limits for production use

Error Handling

Application includes error handling for:

  • Missing text content in PDF pages
  • API key configuration issues
  • File upload validation

Contributing

  1. Fork the repository
  2. Create feature branch
  3. Make changes
  4. Test with various PDF files
  5. Commit changes
  6. Push to branch
  7. Create Pull Request

License

Open source project. Check LICENSE file for details.

Acknowledgments

  • Google AI for Gemini AI model
  • LangChain team for AI application framework
  • Streamlit team for web app framework

Support

For issues or questions:

  • Create issue in project repository
  • Check existing documentation first
  • Provide detailed environment and issue information

Note: Requires valid Google API key and internet connection. Ensure proper permissions for Google Gemini AI services. This is a Python-based web application built with Streamlit that allows users to input a song name and artist name, fetch the lyrics using the Genius API, and then analyze the meaning of those lyrics using Google's Gemini AI model.

The project consists of three main files:

  1. app.py - The main Streamlit application that provides the user interface
  2. genius_lyrics.py - Handles fetching lyrics from the Genius API using the lyricsgenius library
  3. lyrics_meaning.py - Uses Google's Gemini AI to provide detailed line-by-line analysis of the lyrics

Key features:

  • Clean, intuitive web interface with song search functionality
  • Integration with Genius API for accurate lyrics retrieval
  • AI-powered analysis using Google's Gemini 2.5 Flash model for deep lyric interpretation
  • Expandable lyrics viewer with download option to save lyrics as text files
  • Streaming AI analysis for better user experience
  • Error handling for missing lyrics and API failures
  • Session state management to maintain data across interactions

The application requires API keys for both Genius and Google's Gemini AI service, which should be stored in environment variables. Users can search for any song, view the complete lyrics, download them, and get detailed AI analysis explaining metaphors, cultural references, and emotional meanings.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选