GLM Vision Server
Enables image analysis using GLM-4.5V's vision capabilities from Z.AI. Supports analyzing both local image files and URLs with customizable prompts and parameters.
README
MCP Server GLM Vision
A Model Context Protocol (MCP) server that integrates GLM-4.5V from Z.AI with Claude Code.
Features
- Image Analysis: Analyze images using GLM-4.5V's vision capabilities
- Local File Support: Analyze local image files or URLs
- Configurable: Easy setup with environment variables
Installation
Prerequisites
- Python 3.10 or higher
- GLM API key from Z.AI
- Claude Code installed
Setup
-
Clone or create the project directory:
cd /path/to/your/project -
Create and activate virtual environment:
python3 -m venv env source env/bin/activate # On Windows: env\Scripts\activate -
Install dependencies:
pip install -r requirements.txt # or with uv (recommended) uv pip install -r requirements.txt -
Set up environment variables:
cp .env.example .env # Edit .env with your GLM API key from Z.AI -
Add the server to Claude Code:
# Using uv (recommended) uv run mcp install -e . --name "GLM Vision Server" # Or manually add to Claude Desktop configuration: claude mcp add-json --scope user glm-vision '{ "type": "stdio", "command": "/path/to/your/project/env/bin/python", "args": ["/path/to/your/project/glm-vision.py"], "env": {"GLM_API_KEY": "your_api_key_here"} }'
Configuration
Set these environment variables in your .env file:
| Variable | Description | Default |
|---|---|---|
GLM_API_KEY |
Your GLM API key from Z.AI | (required) |
GLM_API_BASE |
GLM API base URL | https://api.z.ai/api/paas/v4 |
GLM_MODEL |
Model name to use | glm-4.5v |
Usage
Available Tools
glm-vision
Analyze an image file using GLM-4.5V's vision capabilities. Supports both local files and URLs.
Parameters:
image_path(required): Local file path or URL of the image to analyzeprompt(required): What to ask about the imagetemperature(optional): Response randomness (0.0-1.0, default: 0.7)thinking(optional): Enable thinking mode to see model's reasoning process (default: false)max_tokens(optional): Maximum tokens in response (max 64K, default: 2048)
Example:
Use the glm-vison tool with:
- image_path: "/path/to/your/image.jpg"
- prompt: "Describe what you see in this image"
Testing
Test the server using the MCP Inspector:
# With uv
uv run python glm-vision.py
# Or with python
python glm-vision.py
Development
Running Tests
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black .
isort .
# Type checking
mypy glm-vision.py
Troubleshooting
- API Key Issues: Make sure your
GLM_API_KEYis correctly set in the environment - Connection Problems: Check your internet connection and API endpoint
- Model Errors: Verify that the model name (
GLM_MODEL) is correct and available
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
Support
For issues related to the GLM API, contact Z.AI support. For MCP server issues, please create an issue in the repository.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。