gNMIBuddy

gNMIBuddy

An MCP server that enables LLMs to retrieve structured network information, including routing, interfaces, MPLS, and topology, from devices using gNMI and OpenConfig models. It facilitates real-time network analysis, log filtering, and status monitoring through a standardized interface.

Category
访问服务器

README

🧪 gNMIBuddy

An over-engineered and opinionated tool that retrieves essential network information from devices using gNMI and OpenConfig models. Designed primarily for LLMs with Model Context Protocol (MCP) integration, it also provides a full CLI for direct use.

Opinionated by design, over-engineered by passion. gNMI and YANG expose overwhelming amounts of data with countless parameters. This tool provides what I consider the most relevant information for LLMs. And who doesn't enjoy building complicated solutions.

🎯 What It Does

Retrieve structured network data in JSON format:

  • 🔄 Routing: BGP, ISIS protocols and neighbor states
  • 🔌 Interfaces: Status, configuration, and statistics
  • 🏷️ MPLS: Labels, forwarding tables, and segment routing
  • 🔒 VPN/VRF: L3VPN configuration and route targets
  • 📝 Logs: Filtered device logs with keyword search
  • 🏠 Topology: Device neighbors and network-wide topology analysis

See the API definition for all available APIs and options.

⚡ Prerequisites

  • Python 3.13+
  • uv, see the docs to install it.
    • brew is recommended for macOS users
  • Network devices with gNMI enabled.

Windows users: The repo require a Unix-like environment. Use WSL.

Device Compatibility

Tested on:

  • Cisco XRd Control Plane (24.4.1.26I, 25.3.1)

[!NOTE] The get_logs() function only works on IOS-XR.

Devices must support gNMI and OpenConfig models listed below:

OpenConfig Models dependencies

  • openconfig-system >= 0.17.1
  • openconfig-interfaces >= 3.0.0
  • openconfig-network-instance >= 1.3.0

[!NOTE] If the required model for a function is not found, gNMIBuddy will return an error. If the model version is older than required, it will continue execution but warn the user about potential errors.

You can use the capabilities command to verify the supported models on a specific device. If you have many devices you can use the --device option.

uvx --from git+https://github.com/jillesca/gNMIBuddy.git \
gnmibuddy device capabilities --all-devices

Device Inventory file

gNMIBuddy identifies devices by hostname and looks up their corresponding IP addresses and credentials from the inventory file.

[!CAUTION] Without a device inventory file, gNMIBuddy cannot operate.

Provide device inventory via --inventory PATH or set NETWORK_INVENTORY env var.

[!TIP] Store environment variables in a .env file.

The inventory must be a JSON list of Device objects with these required fields:

  • name: Device hostname
  • ip_address: IP for gNMI connections
  • nos: Network OS identifier
    • iosxr only for now, use it even if you have other NOS. More will be added later.

Authentication (choose one method):

  • Username/Password: Requires both username and password fields
  • Certificate-based: Requires both path_cert and path_key fields

Schema: src/schemas/models.py | Example: xrd_sandbox.json

[
  {
    "name": "xrd-1",
    "ip_address": "10.10.20.101",
    "nos": "iosxr",
    "username": "cisco",
    "password": "C1sco12345"
  },
  {
    "name": "xrd-2",
    "ip_address": "10.10.20.102",
    "nos": "iosxr",
    "path_cert": "/opt/certs/device.pem",
    "path_key": "/opt/certs/device.key"
  }
]

[!TIP] Validate your inventory: Use gnmibuddy inventory validate to check your inventory file for proper format, valid IP addresses, required fields, and authentication configuration before running network commands.

🚀 Quick Start

🎯 Instant Testing with MCP Inspector

Fastest way to try gNMIBuddy:

# Replace `xrd_sandbox.json` with your actual inventory file
echo '#!/usr/bin/env bash' > /tmp/gnmibuddy-mcp-wrapper \
&& echo 'exec uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy-mcp "$@"' >> /tmp/gnmibuddy-mcp-wrapper \
&& chmod +x /tmp/gnmibuddy-mcp-wrapper \
&& NETWORK_INVENTORY=xrd_sandbox.json npx @modelcontextprotocol/inspector /tmp/gnmibuddy-mcp-wrapper

[!TIP] No repo cloning, no MCP client setup required! If you don't have XRd, see Testing with DevNet Sandbox.

<details> <summary><strong>🔌 Have an MCP Client? (VSCode, Cursor, Claude Desktop)</strong></summary>

Recommended: No installation required - runs directly from GitHub using uvx:

MCP Client Configuration
VSCode 📋 Copy config
Standard MCP Clients 📋 Copy config

For Development - when you need to test local changes:

MCP Client Configuration
VSCode 📋 Copy config
Standard MCP Clients 📋 Copy config

The "Standard MCP Clients" config works with any MCP client following the MCP specification (Cursor, Claude Desktop, etc.). VSCode uses a different format.

Setup:

  • uvx configs: Update the NETWORK_INVENTORY path to your inventory file
  • dev configs: Update the NETWORK_INVENTORY path and cwd to your local project directory

</details>

<details> <summary><strong>🛠️ CLI Usage (Direct Tool Usage)</strong></summary>

For CLI users who want to use gNMIBuddy as a command-line tool:

One-time execution

# Run directly without installation
uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy --help

# Example with commands
uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy --inventory your_inventory.json device list

Install as a persistent tool

# Install the tool globally
uv tool install git+https://github.com/jillesca/gNMIBuddy.git

# Use it directly
gnmibuddy --help
gnmibuddy device info --device R1

# Uninstall when no longer needed
uv tool uninstall gnmibuddy

# To get updates
uv tool upgrade gnmibuddy

The uvx method automatically builds and runs the tool in an isolated environment without affecting your system.

</details>

📖 CLI Reference

# Clone and setup (one-time only)
git clone https://github.com/jillesca/gNMIBuddy.git && cd gNMIBuddy
# Install dependencies
uv sync --frozen --no-dev
❯ uv run gnmibuddy.py --help

  ▗▄▄▖▗▖  ▗▖▗▖  ▗▖▗▄▄▄▖▗▄▄▖ ▗▖ ▗▖▗▄▄▄ ▗▄▄▄▗▖  ▗▖
 ▐▌   ▐▛▚▖▐▌▐▛▚▞▜▌  █  ▐▌ ▐▌▐▌ ▐▌▐▌  █▐▌  █▝▚▞▘
 ▐▌▝▜▌▐▌ ▝▜▌▐▌  ▐▌  █  ▐▛▀▚▖▐▌ ▐▌▐▌  █▐▌  █ ▐▌
 ▝▚▄▞▘▐▌  ▐▌▐▌  ▐▌▗▄█▄▖▐▙▄▞▘▝▚▄▞▘▐▙▄▄▀▐▙▄▄▀ ▐▌

An opinionated tool that retrieves essential network information from devices using gNMI and OpenConfig models.
Designed primarily for LLMs with Model Context Protocol (MCP) integration, it also provides a full CLI.
Help: https://github.com/jillesca/gNMIBuddy

Python Version: 3.13.4
gNMIBuddy Version: 0.1.0
Usage:
  gnmibuddy.py [OPTIONS] COMMAND [ARGS]...

📋 Inventory Requirement:
  Provide device inventory via --inventory PATH, set NETWORK_INVENTORY env var, or use .env file (configurable with --env-file PATH)

Options:
  -h, --help            Show this message and exit
  -V, --version         Show version information
  --log-level LEVEL     Set logging level (debug, info, warning, error)
  --module-log-help     Show detailed module logging help
  --all-devices         Run on all devices concurrently
  --inventory PATH      Path to inventory JSON file
  -e, --env-file PATH   Path to .env file for configuration (default: .env in project root)
  --max-workers NUMBER  Maximum number of concurrent workers for batch operations (--all-devices, --devices, --device-file)

Commands:
  device (d)    Device Information
    capabilities Get gNMI capabilities from a network device
    info         Get system information from a network device
    list         List all available devices in the inventory
    profile      Get device profile and role information

  network (n)   Network Protocols
    interface    Get interface status and configuration
    mpls         Get MPLS forwarding and label information
    routing      Get routing protocol information (BGP, ISIS, OSPF)
    vpn          Get VPN/VRF configuration and status

  topology (t)  Network Topology
    neighbors    Get direct neighbor information via LLDP/CDP
    adjacency    Get network-wide IP adjacency analysis for complete topology
    network      Get complete network topology information. Queries all devices in inventory.

  ops (o)       Operations
    logs         Retrieve and filter device logs
    validate     Validate all collector functions (development tool)

  inventory (i) Inventory Management
    validate     Validate inventory file format and schema

Examples:
  gnmibuddy.py device info --device R1
  gnmibuddy.py network routing --device R1
  gnmibuddy.py --all-devices device list
  gnmibuddy.py inventory validate --inventory inventory.json
  gnmibuddy.py --env-file production.env device list
  gnmibuddy.py --env-file dev.env --log-level debug device info --device R1

Run 'gnmibuddy.py COMMAND --help' for more information on a command.

🤖 Development

Quick Testing with MCP Inspector

Recommended: Use uvx (no repository clone needed):

# Replace `xrd_sandbox.json` with your actual inventory file
echo '#!/usr/bin/env bash' > /tmp/gnmibuddy-mcp-wrapper \
&& echo 'exec uvx --from git+https://github.com/jillesca/gNMIBuddy.git gnmibuddy-mcp "$@"' >> /tmp/gnmibuddy-mcp-wrapper \
&& chmod +x /tmp/gnmibuddy-mcp-wrapper \
&& NETWORK_INVENTORY=xrd_sandbox.json npx @modelcontextprotocol/inspector /tmp/gnmibuddy-mcp-wrapper
EOF

For local development (testing uncommitted changes):

# Run from your gNMIBuddy project directory (where pyproject.toml is located)
cd /path/to/your/gNMIBuddy && \
NETWORK_INVENTORY=your_inventory.json \
npx @modelcontextprotocol/inspector \
uv run --frozen gnmibuddy-mcp

MCP Client Configuration

Choose the approach that fits your needs:

Use Case VSCode Standard MCP Clients
Production/Testing 📋 Copy config 📋 Copy config
Local Development 📋 Copy config 📋 Copy config

Standard MCP Clients config works with Cursor, Claude Desktop, and any other client following the MCP specification. VSCode requires a specific format.

Configuration requirements:

  • uvx configs: Only update NETWORK_INVENTORY path to your inventory file
  • dev configs: Update both NETWORK_INVENTORY path and cwd to your local project directory

🧪 Testing with DevNet Sandbox

Don't have network devices? Use the DevNet XRd Sandbox, follow the instructions to bring up a MPLS network with docker, then configure gNMI with the included Ansible playbook:

# If you cloned the repo
# Enable gRPC on the DevNet XRd Sandbox
ANSIBLE_HOST_KEY_CHECKING=False \
uvx --from "ansible-core==2.19.2" --with "paramiko,ansible" \
ansible-playbook ansible-helper/xrd_apply_config.yaml -i ansible-helper/hosts

<details> <summary><strong>If you didn't clone the repo use this command</strong></summary>

# Self-contained command that downloads files automatically
ANSIBLE_HOST_KEY_CHECKING=False \
bash -c 'TMPDIR=$(mktemp -d) \
&& trap "rm -rf $TMPDIR" EXIT \
&& curl -s https://raw.githubusercontent.com/jillesca/gNMIBuddy/refs/heads/main/ansible-helper/xrd_apply_config.yaml > "$TMPDIR/playbook.yaml" \
&& curl -s https://raw.githubusercontent.com/jillesca/gNMIBuddy/refs/heads/main/ansible-helper/hosts > "$TMPDIR/hosts" \
&& uvx --from "ansible-core==2.19.2" --with "paramiko,ansible" ansible-playbook "$TMPDIR/playbook.yaml" -i "$TMPDIR/hosts"'

</details>

Test with the xrd_sandbox.json inventory file part of the repository.

<details> <summary><strong>If you have problems with Ansible</strong></summary>

Enable manually gNMI. Apply this configuration to all XRd devices:

grpc
 port 57777
 no-tls

Don't forget to commit your changes to XRd.

</details>

Testing with AI Agents

Want to see how this MCP tool integrates with actual AI agents? Check out sp_oncall - a graph of agents that use gNMIBuddy to demonstrate real-world network operations scenarios.

📋 Response Format

gNMIBuddy provides structured, consistent responses for all network operations. The response format depends on whether you're targeting a single device or multiple devices.

Single Device Operations

Single device operations return a NetworkOperationResult object with detailed information about the operation, including status, data, metadata, and error handling.

@dataclass
class NetworkOperationResult:
    device_name: str
    ip_address: IPAddress
    nos: NetworkOS
    operation_type: str
    status: OperationStatus
    data: Dict[str, Any] = field(default_factory=dict)
    metadata: Dict[str, Any] = field(default_factory=dict)
    error_response: Optional[ErrorResponse] = None
    feature_not_found_response: Optional[FeatureNotFoundResponse] = None

Batch Operations

Batch operations (using --all-devices, --devices, or --device-file) return a BatchOperationResult object containing:

  • results: A list of NetworkOperationResult objects, one for each device
  • summary: Aggregate statistics about the batch operation
  • metadata: Additional batch operation metadata
@dataclass
class BatchOperationResult:
    results: List[NetworkOperationResult]  # One result per device
    summary: BatchOperationSummary
    metadata: Dict[str, Any] = field(default_factory=dict)

For more details, see the response schema definition.

🏗️ Architecture

Schema Organization

gNMIBuddy uses a centralized schema approach for data contracts:

  • src/schemas/: Contains all shared data models and response contracts.
  • src/collectors/: Network telemetry data collectors following OpenTelemetry patterns.
  • src/processors/: Data transformation processors following OpenTelemetry patterns.

These schemas serve as contracts between different parts of the system, ensuring consistency across:

  • CLI and API interfaces.
  • Network operation responses.
  • Error handling and status reporting.
  • MCP tool integration.

Data Processing Pipeline

The application follows an OpenTelemetry-inspired architecture:

Raw gNMI Data → Collector → Processor → Schema → Response
  1. Collectors gather data from network devices via gNMI.
  2. Processors transform raw data into structured, LLM-friendly formats.
  3. Schemas ensure consistent data contracts across the system.
  4. Responses provide standardized output for CLI, API, and MCP interfaces.

⚙️ Environment Variables

gNMIBuddy supports environment variables for configuration, which work for both CLI and MCP server usage. Environment variables can be loaded from:

  1. Command line arguments (highest priority)
  2. Operating system environment variables
  3. .env files (default: .env in project root)
  4. Default values (lowest priority)

.env File Support

gNMIBuddy automatically loads environment variables from a .env file in the project root. You can specify a custom .env file using the --env-file option:

# Use default .env file
gnmibuddy device list

# Use custom environment file
gnmibuddy --env-file production.env device list

Example:

# .env file

# Network configuration
NETWORK_INVENTORY=/path/to/inventory.json

# Logging configuration
GNMIBUDDY_LOG_LEVEL=debug
GNMIBUDDY_MODULE_LEVELS=src.cmd=warning,src.inventory=debug
GNMIBUDDY_STRUCTURED_LOGGING=true
GNMIBUDDY_LOG_FILE=/custom/log/path.log
GNMIBUDDY_EXTERNAL_SUPPRESSION_MODE=development

# MCP debugging
GNMIBUDDY_MCP_TOOL_DEBUG=true

Global Configuration

Variable Description Values Default
NETWORK_INVENTORY Device inventory file path File path -
GNMIBUDDY_LOG_LEVEL Global log level debug, info, warning, error info
GNMIBUDDY_MODULE_LEVELS Module-specific log levels module1=debug,module2=warning -
GNMIBUDDY_LOG_FILE Custom log file path (overrides sequential) File path logs/gnmibuddy_XXX.log
GNMIBUDDY_STRUCTURED_LOGGING Enable JSON logging true, false false
GNMIBUDDY_EXTERNAL_SUPPRESSION_MODE External library suppression cli, mcp, development cli
GNMIBUDDY_MCP_TOOL_DEBUG Enable MCP tool debugging true, false false

Sequential Log Files: gNMIBuddy automatically creates numbered log files (gnmibuddy_001.log, gnmibuddy_002.log, etc.) for each execution in the logs/ directory. The highest number is always the most recent run.

[!NOTE] Environment variables serve as defaults and can be overridden by CLI arguments like --log-level and --module-log-levels.

For detailed environment configuration options and advanced usage, see Environment Configuration Guide

For complete logging environment variable documentation, see Logging README

⚙️ Batch Operations & Concurrency

gNMIBuddy supports running commands across multiple devices simultaneously with configurable concurrency controls to optimize performance while avoiding rate limiting.

Batch Operation Options

Device Selection:

  • --device DEVICE: Single device operation
  • --devices device1,device2,device3: Comma-separated device list
  • --device-file path/to/devices.txt: Device list from file (one per line)
  • --all-devices: Run on all devices in inventory

Concurrency Controls:

  • --max-workers N: Maximum concurrent devices to process (default: 5)
  • --per-device-workers N: Maximum concurrent operations per device (default: varies by command)

Understanding Concurrency Levels

gNMIBuddy operates with two levels of concurrency:

  1. Device-level concurrency (--max-workers): How many devices to process simultaneously
  2. Per-device concurrency (command-specific): How many operations to run simultaneously on each device

Total concurrent requests = max_workers × per_device_operations

Examples

# Process 3 devices, 2 operations per device = 6 total requests
uv run gnmibuddy.py --max-workers 3 ops validate --devices xrd-1,xrd-2,xrd-3 --per-device-workers 2

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选