goodday-mcp
Goodday‑MCP is a lightweight Model Context Protocol (MCP) server designed to seamlessly integrate with the Goodday project management platform via its API v2. It enables querying of projects, tasks, and users—without altering any data—making it ideal for secure context-aware applications
README
Goodday MCP Server
A Model Context Protocol (MCP) server for integrating with Goodday project management platform. This server provides tools for managing projects, tasks, and users through the Goodday API v2.
Features
Project Management
- get_projects: Retrieve list of projects (with options for archived and root-only filtering)
- get_project: Get detailed information about a specific project
- create_project: Create new projects with customizable templates and settings
- get_project_users: Get users associated with a specific project
Task Management
- get_project_tasks: Retrieve tasks from specific projects (with options for closed tasks and subfolders)
- get_user_assigned_tasks: Get tasks assigned to a specific user
- get_user_action_required_tasks: Get action-required tasks for a user
- get_task: Get detailed information about a specific task
- create_task: Create new tasks with full customization (subtasks, assignments, dates, priorities)
- update_task_status: Update task status with optional comments
- add_task_comment: Add comments to tasks
User Management
- get_users: Retrieve list of organization users
- get_user: Get detailed information about a specific user
OpenWebUI Integration
This package also includes an OpenWebUI tool that provides a complete interface for Goodday project management directly in chat interfaces. The OpenWebUI tool includes:
Features
- Project Management: Get projects and project tasks
- Sprint Management: Get tasks from specific sprints by name/number
- User Management: Get tasks assigned to specific users
- Smart Query: Natural language interface for common requests
- Search: Semantic search across tasks using VectorDB backend
- Task Details: Get detailed task information and messages
Setup
- Copy
openwebui/goodday_openwebui_complete_tool.pyto your OpenWebUI tools directory - Configure the valves with your API credentials:
api_key: Your Goodday API tokensearch_url: Your VectorDB search endpoint (optional)bearer_token: Bearer token for search API (optional)
Vector Database Setup (Optional)
For semantic search functionality, you can set up a vector database using the provided n8n workflow (openwebui/n8n-workflow-goodday-vectordb.json). This workflow:
- Fetches all Goodday projects and tasks
- Extracts task messages and content
- Creates embeddings using Ollama
- Stores in Qdrant vector database
- Provides search API endpoint
See openwebui/OPENWEBUI_TOOL_README.md for detailed usage instructions.
Installation
From PyPI (Recommended)
pip install goodday-mcp
From Source
Prerequisites
- Python 3.10 or higher
- UV package manager (recommended) or pip
- Goodday API token
Setup with UV
-
Install UV (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh -
Clone and set up the project:
git clone https://github.com/cdmx1/goodday-mcp.git cd goodday-mcp # Create virtual environment and install dependencies uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate uv sync
Setup with pip
git clone https://github.com/cdmx1/goodday-mcp.git
cd goodday-mcp
pip install -e .
Configuration
-
Set up environment variables: Create a
.envfile in your project root or export the variable:export GOODDAY_API_TOKEN=your_goodday_api_token_hereTo get your Goodday API token:
- Go to your Goodday organization
- Navigate to Settings → API
- Click the generate button to create a new token
Usage
Running the Server Standalone
If installed from PyPI:
goodday-mcp
If running from source with UV:
uv run goodday-mcp
Using with Claude Desktop
-
Configure Claude Desktop by editing your configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
-
Add the server configuration:
Option A: If installed from PyPI:
{ "mcpServers": { "goodday": { "command": "goodday-mcp", "env": { "GOODDAY_API_TOKEN": "your_goodday_api_token_here" } } } }Option B: If running from source:
{ "mcpServers": { "goodday": { "command": "uv", "args": ["run", "goodday-mcp"], "env": { "GOODDAY_API_TOKEN": "your_goodday_api_token_here" } } } } -
Restart Claude Desktop to load the new server.
Using with Other MCP Clients
The server communicates via stdio transport and can be integrated with any MCP-compatible client. Refer to the MCP documentation for client-specific integration instructions.
API Reference
Environment Variables
| Variable | Description | Required |
|---|---|---|
GOODDAY_API_TOKEN |
Your Goodday API token | Yes |
Tool Examples
Get Projects
# Get all active projects
get_projects()
# Get archived projects
get_projects(archived=True)
# Get only root-level projects
get_projects(root_only=True)
Create a Task
create_task(
project_id="project_123",
title="Implement new feature",
from_user_id="user_456",
message="Detailed description of the task",
to_user_id="user_789",
deadline="2025-06-30",
priority=5
)
Update Task Status
update_task_status(
task_id="task_123",
user_id="user_456",
status_id="status_completed",
message="Task completed successfully"
)
Data Formats
Date Format
All dates should be provided in YYYY-MM-DD format (e.g., 2025-06-16).
Priority Levels
- 1-10: Normal priority levels
- 50: Blocker
- 100: Emergency
Project Colors
Project colors are specified as integers from 1-24, corresponding to Goodday's color palette.
Error Handling
The server includes comprehensive error handling:
- Authentication errors: When API token is missing or invalid
- Network errors: When Goodday API is unreachable
- Validation errors: When required parameters are missing
- Permission errors: When user lacks permissions for requested operations
All errors are returned as descriptive strings to help with troubleshooting.
Development
Project Structure
goodday-mcp/
├── goodday_mcp/ # Main package directory
│ ├── __init__.py # Package initialization
│ └── main.py # Main MCP server implementation
├── pyproject.toml # Project configuration and dependencies
├── README.md # This file
├── LICENSE # MIT license
├── uv.lock # Dependency lock file
└── .env # Environment variables (create this)
Adding New Tools
To add new tools to the server:
-
Add the tool function in
goodday_mcp/main.pyusing the@mcp.tool()decorator:@mcp.tool() async def your_new_tool(param1: str, param2: Optional[int] = None) -> str: """Description of what the tool does. Args: param1: Description of parameter 1 param2: Description of optional parameter 2 """ # Implementation here return "Result" -
Test the tool by running the server and testing with an MCP client.
Testing
Test the server by running it directly:
# If installed from PyPI
goodday-mcp
# If running from source
uv run goodday-mcp
The server will start and wait for MCP protocol messages via stdin/stdout.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
For issues related to:
- MCP Server: Create an issue in this repository
- Goodday API: Refer to Goodday API documentation
- MCP Protocol: Refer to MCP documentation
Changelog
v1.0.0
- Initial release
- Full project management capabilities
- Task management with comments and status updates
- User management
- Comprehensive error handling
- UV support with modern Python packaging
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。