Google Ads MCP Server
Enables interaction with Google Ads through secure OAuth authentication to discover keyword ideas, analyze historical search metrics, and generate forecasts for advertising campaigns. Built as a Next.js application with encrypted credential storage and rate limiting.
README
Google Search MCP Server
A Next.js App Router deployment that exposes a Model Context Protocol (MCP)
server focused on organic search research. The server provides two tools—get_autocomplete_suggestions and get_trend_index—
built on top of Google Suggest and Google Trends. No OAuth credentials are required; both tools rely on public endpoints with
careful validation and rate limiting.
Features
- Google Autocomplete: Expands a seed query into the real phrases Google users type right now.
- Google Trends: Returns interest-over-time indices for any keyword with optional geo and category filters.
- Next.js 15 App Router with strict TypeScript, ESLint, and Prettier configuration.
- Structured MCP responses with consistent error handling and lightweight rate limiting.
Requirements
- Node.js 18.18 or newer.
pnpmornpmfor dependency management.
Getting started locally
pnpm install
pnpm dev
The development server defaults to http://localhost:3000.
MCP tools
All tools share the same POST endpoint: POST /api/mcp with JSON payload {"tool": "<name>", "input": { ... } }. Responses
follow the ToolResponse shape ({ ok: true, data } or { ok: false, error }).
ping
{
"tool": "ping"
}
Result:
{
"ok": true,
"data": { "status": "ok" }
}
get_autocomplete_suggestions
Fetches live suggestions from Google Suggest for the provided query.
{
"tool": "get_autocomplete_suggestions",
"input": { "query": "toroidal transformer" }
}
Result:
{
"ok": true,
"data": {
"query": "toroidal transformer",
"suggestions": [
"toroidal transformer winding",
"toroidal transformer core",
"toroidal transformer advantages"
]
}
}
get_trend_index
Returns Google Trends interest-over-time data. Optional fields (geo, timeRange, category, property) map directly to the
underlying Trends API.
{
"tool": "get_trend_index",
"input": {
"keyword": "toroidal transformer",
"timeRange": "today 12-m",
"geo": "US"
}
}
Result (truncated):
{
"ok": true,
"data": {
"keyword": "toroidal transformer",
"geo": "US",
"timeRange": "today 12-m",
"seriesLabels": ["toroidal transformer"],
"averages": [42],
"points": [{ "time": "1704067200", "formattedTime": "Dec 31, 2023", "values": [37] }]
}
}
Rate limiting & errors
- Rate limiting: 10 requests per minute per IP/user agent combination. Exceeding the budget returns
429withcode: RATE_LIMIT_EXCEEDED. - Upstream issues: Failures from Google endpoints map to
UPSTREAM_ERRORwith the HTTP status and service name. - Validation errors: Invalid input payloads return
INVALID_ARGUMENTand include Zod field errors. - Unexpected failures: Return
500withcode: UNKNOWNbut never leak secrets.
ChatGPT Developer Mode integration
Add a remote MCP server in ChatGPT using the following configuration:
- Server URL:
https://<your-app>.vercel.app/api/mcp - Tools: Automatically discovered (
ping,get_autocomplete_suggestions,get_trend_index). - Auth flow: None required—both tools rely on public Google endpoints.
Example invocation in ChatGPT:
{
"tool": "get_trend_index",
"input": { "keyword": "toroidal transformer" }
}
Expect a JSON payload with interest-over-time points that you can combine with autocomplete suggestions to build keyword clusters or validate seasonal demand.
Troubleshooting
| Symptom | Resolution |
|---|---|
RATE_LIMIT_EXCEEDED |
Wait until the window resets (~60 seconds) or reduce tool frequency. |
UPSTREAM_ERROR |
Google responded with an error status. Retry later or adjust the query/filters. |
UNKNOWN |
Check server logs for the underlying exception. |
Acceptance checklist
- [x] Autocomplete MCP tool returning Google Suggest phrases.
- [x] Trends MCP tool returning interest-over-time data.
- [x] README covering setup, usage, and troubleshooting.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。