Google AI Search MCP
Provides AI-powered search and documentation tools using Google Vertex AI or Gemini API with real-time web search grounding, enabling technical queries, code analysis, documentation retrieval, and architecture recommendations to overcome LLM knowledge gaps.
README
Google AI Search MCP
This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of Google AI-powered search and documentation tools specifically designed to help AI coders overcome LLM knowledge gaps and information limitations.
Features
- Provides access to Google AI models (Vertex AI and Gemini API) via specialized MCP tools.
- Focuses on real-time information retrieval and documentation-based analysis.
- Supports web search grounding for current information that LLMs lack.
- Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
- Uses streaming API by default for potentially better responsiveness.
- Includes basic retry logic for transient API errors.
- Minimal safety filters applied (
BLOCK_NONE) to reduce potential blocking (use with caution).
Tools Provided
Core Search & Documentation Tools
answer_query_websearch: Developer-focused natural language queries with automatic technical detection, enhanced search methodology, and comprehensive code formatting using Google AI with real-time search results.explain_topic_with_docs: Streamlined technical explanations with improved debugging scenarios, synthesizing information from official documentation with reduced verbosity and enhanced troubleshooting guidance.get_doc_snippets: Enhanced code snippet retrieval with progressive complexity examples, advanced search patterns, version-specific targeting, and comprehensive context for technical queries from official documentation.generate_project_guidelines: Generates comprehensive structured project guidelines documents based on specified technologies, using web search for current best practices and industry standards.
Advanced Analysis Tools
code_analysis_with_docs: Evidence-based code analysis with standardized citations, severity categorization, and actionable recommendations by comparing code against official documentation best practices.technical_comparison: Enhanced technology comparison with quantitative benchmarks, performance metrics, market adoption statistics, and detailed evidence-based analysis across multiple criteria.architecture_pattern_recommendation: Comprehensive architecture guidance with performance metrics, quantitative benefits, detailed implementation roadmaps, and evidence-based pattern recommendations for specific use cases.
(Note: Input/output schemas for each tool are defined in their respective files within src/tools/ and exposed via the MCP server.)
Prerequisites
- Node.js (v18+)
- Bun (
npm install -g bun) - Google Cloud Project with Billing enabled (if using Vertex AI).
- Vertex AI API enabled in the GCP project (if using Vertex AI).
- Google Cloud Authentication configured in your environment (Application Default Credentials via
gcloud auth application-default loginis recommended, or a Service Account Key) OR Gemini API key.
Setup & Installation
- Clone/Place Project: Ensure the project files are in your desired location.
- Install Dependencies:
bun install - Configure Environment:
- Create a
.envfile in the project root (copy.env.example). - Set the required and optional environment variables as described in
.env.example.- Set
AI_PROVIDERto either"vertex"or"gemini". - If
AI_PROVIDER="vertex",GOOGLE_CLOUD_PROJECTis required. - If
AI_PROVIDER="gemini",GEMINI_API_KEYis required.
- Set
- Create a
- Build the Server:
This compiles the TypeScript code tobun run buildbuild/index.js.
Usage (Standalone / NPX)
Once published to npm, you can run this server directly using npx:
# Ensure required environment variables are set (e.g., GOOGLE_CLOUD_PROJECT or GEMINI_API_KEY)
bunx google-ai-search-mcp
Alternatively, install it globally:
bun install -g google-ai-search-mcp
# Then run:
google-ai-search-mcp
Note: Running standalone requires setting necessary environment variables (like GOOGLE_CLOUD_PROJECT, GOOGLE_CLOUD_LOCATION, GEMINI_API_KEY, authentication credentials if not using ADC) in your shell environment before executing the command.
Running with Cline
-
Configure MCP Settings: Add/update the configuration in your Cline MCP settings file (e.g.,
.roo/mcp.json). You have two primary ways to configure the command:Option A: Using Node (Direct Path - Recommended for Development)
This method uses
nodeto run the compiled script directly. It's useful during development when you have the code cloned locally.{ "mcpServers": { "google-ai-search-mcp": { "command": "node", "args": [ "/full/path/to/your/google-ai-search-mcp/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }- Important: Ensure the
argspath points correctly to thebuild/index.jsfile. Using an absolute path might be more reliable.
Option B: Using NPX (Requires Package Published to npm)
This method uses
npxto automatically download and run the server package from the npm registry. This is convenient if you don't want to clone the repository.{ "mcpServers": { "google-ai-search-mcp": { "command": "bunx", // Use bunx "args": [ "-y", // Auto-confirm installation "google-ai-search-mcp" // The npm package name ], "env": { // --- General AI Configuration --- "AI_PROVIDER": "vertex", // "vertex" or "gemini" // --- Required (Conditional) --- "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex" // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini" // --- Optional Model Selection --- "VERTEX_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="vertex" (Example override) "GEMINI_MODEL_ID": "gemini-2.5-pro", // If AI_PROVIDER="gemini" // --- Optional AI Parameters --- "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI "AI_TEMPERATURE": "0.0", "AI_USE_STREAMING": "true", "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example "AI_MAX_RETRIES": "3", "AI_RETRY_DELAY_MS": "1000", // --- Optional Vertex Authentication --- // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex }, "disabled": false, "alwaysAllow": [ // Add tool names here if you don't want confirmation prompts // e.g., "answer_query_websearch" ], "timeout": 3600 // Optional: Timeout in seconds } // Add other servers here... } }- Ensure the environment variables in the
envblock are correctly set, either matching.envor explicitly defined here. Remove comments from the actual JSON file.
- Important: Ensure the
-
Restart/Reload Cline: Cline should detect the configuration change and start the server.
-
Use Tools: You can now use the comprehensive list of Google AI-powered search and documentation tools via Cline.
Development
- Watch Mode:
bun run watch - Build:
bun run build - Inspector:
bun run inspector
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。