Google Analytics MCP Server

Google Analytics MCP Server

Connects Google Analytics 4 data to Claude, Cursor and other MCP clients, enabling natural language queries of website traffic, user behavior, and analytics data with access to 200+ GA4 dimensions and metrics.

Category
访问服务器

README

<p align="center"> <img src="logo.png" alt="Google Analytics MCP Logo" width="120" />

Google Analytics MCP Server

PyPI version PyPI Downloads GitHub stars GitHub forks Python 3.8+ License: MIT Made with Love

Connect Google Analytics 4 data to Claude, Cursor and other MCP clients. Query your website traffic, user behavior, and analytics data in natural language with access to 200+ GA4 dimensions and metrics.

Compatible with: Claude, Cursor and other MCP clients. </p>

Prerequisites

Check your Python setup:

# Check Python version (need 3.8+)
python --version
python3 --version

# Check pip
pip --version
pip3 --version

Required:

  • Python 3.8 or higher
  • Google Analytics 4 property with data
  • Service account with Analytics Reporting API access

Step 1: Setup Google Analytics Credentials

Create Service Account in Google Cloud Console

  1. Go to Google Cloud Console
  2. Create or select a project:
    • New project: Click "New Project" → Enter project name → Create
    • Existing project: Select from dropdown
  3. Enable the Analytics APIs:
    • Go to "APIs & Services" → "Library"
    • Search for "Google Analytics Reporting API" → Click "Enable"
    • Search for "Google Analytics Data API" → Click "Enable"
  4. Create Service Account:
    • Go to "APIs & Services" → "Credentials"
    • Click "Create Credentials" → "Service Account"
    • Enter name (e.g., "ga4-mcp-server")
    • Click "Create and Continue"
    • Skip role assignment → Click "Done"
  5. Download JSON Key:
    • Click your service account
    • Go to "Keys" tab → "Add Key" → "Create New Key"
    • Select "JSON" → Click "Create"
    • Save the JSON file - you'll need its path

Add Service Account to GA4

  1. Get service account email:
    • Open the JSON file
    • Find the client_email field
    • Copy the email (format: ga4-mcp-server@your-project.iam.gserviceaccount.com)
  2. Add to GA4 property:
    • Go to Google Analytics
    • Select your GA4 property
    • Click "Admin" (gear icon at bottom left)
    • Under "Property" → Click "Property access management"
    • Click "+" → "Add users"
    • Paste the service account email
    • Select "Viewer" role
    • Uncheck "Notify new users by email"
    • Click "Add"

Find Your GA4 Property ID

  1. In Google Analytics, select your property
  2. Click "Admin" (gear icon)
  3. Under "Property" → Click "Property details"
  4. Copy the Property ID (numeric, e.g., 123456789)
    • Note: This is different from the "Measurement ID" (starts with G-)

Test Your Setup (Optional)

Verify your credentials:

pip install google-analytics-data

Create a test script (test_ga4.py):

import os
from google.analytics.data_v1beta import BetaAnalyticsDataClient

# Set credentials path
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/service-account-key.json"

# Test connection
client = BetaAnalyticsDataClient()
print("✅ GA4 credentials working!")

Run the test:

python test_ga4.py

If you see "✅ GA4 credentials working!" you're ready to proceed.


Step 2: Install the MCP Server

Choose one method:

Method A: pip install (Recommended)

pip install google-analytics-mcp

MCP Configuration:

First, check your Python command:

python3 --version
python --version

Then use the appropriate configuration:

If python3 --version worked:

{
  "mcpServers": {
    "ga4-analytics": {
      "command": "python3",
      "args": ["-m", "ga4_mcp_server"],
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
        "GA4_PROPERTY_ID": "123456789"
      }
    }
  }
}

If python --version worked:

{
  "mcpServers": {
    "ga4-analytics": {
      "command": "python",
      "args": ["-m", "ga4_mcp_server"],
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
        "GA4_PROPERTY_ID": "123456789"
      }
    }
  }
}

Method B: GitHub download

git clone https://github.com/surendranb/google-analytics-mcp.git
cd google-analytics-mcp
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

MCP Configuration:

{
  "mcpServers": {
    "ga4-analytics": {
      "command": "/full/path/to/ga4-mcp-server/venv/bin/python",
      "args": ["/full/path/to/ga4-mcp-server/ga4_mcp_server.py"],
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
        "GA4_PROPERTY_ID": "123456789"
      }
    }
  }
}

Step 3: Update Configuration

Replace these placeholders in your MCP configuration:

  • /path/to/your/service-account-key.json with your JSON file path
  • 123456789 with your GA4 Property ID
  • /full/path/to/ga4-mcp-server/ with your download path (Method B only)

Usage

Once configured, ask your MCP client questions like:

Discovery & Exploration

  • What GA4 dimension categories are available?
  • Show me all ecommerce metrics
  • What dimensions can I use for geographic analysis?

Traffic Analysis

  • What's my website traffic for the past week?
  • Show me user metrics by city for last month
  • Compare bounce rates between different date ranges

Multi-Dimensional Analysis

  • Show me revenue by country and device category for last 30 days
  • Analyze sessions and conversions by campaign and source/medium
  • Compare user engagement across different page paths and traffic sources

E-commerce Analysis

  • What are my top-performing products by revenue?
  • Show me conversion rates by traffic source and device type
  • Analyze purchase behavior by user demographics

Quick Start Examples

Try these example queries to see the MCP's analytical capabilities:

1. Geographic Distribution

Show me a map of visitors by city for the last 30 days, with a breakdown of new vs returning users

This demonstrates:

  • Geographic analysis
  • User segmentation
  • Time-based filtering
  • Data visualization

2. User Behavior Analysis

Compare average session duration and pages per session by device category and browser over the last 90 days

This demonstrates:

  • Multi-dimensional analysis
  • Time series comparison
  • User engagement metrics
  • Technology segmentation

3. Traffic Source Performance

Show me conversion rates and revenue by traffic source and campaign, comparing last 30 days vs previous 30 days

This demonstrates:

  • Marketing performance analysis
  • Period-over-period comparison
  • Conversion tracking
  • Revenue attribution

4. Content Performance

What are my top 10 pages by engagement rate, and how has their performance changed over the last 3 months?

This demonstrates:

  • Content analysis
  • Trend analysis
  • Engagement metrics
  • Ranking and sorting

Available Tools

The server provides 5 main tools:

  1. get_ga4_data - Retrieve GA4 data with custom dimensions and metrics
  2. list_dimension_categories - Browse available dimension categories
  3. list_metric_categories - Browse available metric categories
  4. get_dimensions_by_category - Get dimensions for a specific category
  5. get_metrics_by_category - Get metrics for a specific category

Dimensions & Metrics

Access to 200+ GA4 dimensions and metrics organized by category:

Dimension Categories

  • Time: date, hour, month, year, etc.
  • Geography: country, city, region
  • Technology: browser, device, operating system
  • Traffic Source: campaign, source, medium, channel groups
  • Content: page paths, titles, content groups
  • E-commerce: item details, transaction info
  • User Demographics: age, gender, language
  • Google Ads: campaign, ad group, keyword data
  • And 10+ more categories

Metric Categories

  • User Metrics: totalUsers, newUsers, activeUsers
  • Session Metrics: sessions, bounceRate, engagementRate
  • E-commerce: totalRevenue, transactions, conversions
  • Events: eventCount, conversions, event values
  • Advertising: adRevenue, returnOnAdSpend
  • And more specialized metrics

Troubleshooting

If you get "No module named ga4_mcp_server" (Method A):

pip3 install --user google-analytics-mcp

If you get "executable file not found":

  • Try the other Python command (python vs python3)
  • Use pip3 instead of pip if needed

Permission errors:

# Try user install instead of system-wide
pip install --user google-analytics-mcp

Credentials not working:

  1. Verify the JSON file path is correct and accessible
  2. Check service account permissions:
    • Go to Google Cloud Console → IAM & Admin → IAM
    • Find your service account → Check permissions
  3. Verify GA4 access:
    • GA4 → Admin → Property access management
    • Check for your service account email
  4. Verify ID type:
    • Property ID: numeric (e.g., 123456789) ✅
    • Measurement ID: starts with G- (e.g., G-XXXXXXXXXX) ❌

API quota/rate limit errors:

  • GA4 has daily quotas and rate limits
  • Try reducing the date range in your queries
  • Wait a few minutes between large requests

Project Structure

google-analytics-mcp/
├── ga4_mcp_server.py       # Main MCP server
├── ga4_dimensions.json     # All available GA4 dimensions
├── ga4_metrics.json        # All available GA4 metrics
├── requirements.txt        # Python dependencies
├── pyproject.toml          # Package configuration
├── README.md               # This file
└── claude-config-template.json  # MCP configuration template

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选