Google Calendar MCP Server
Provides AI assistants with intelligent access to Google Calendar data, enabling natural language queries about availability, upcoming events, schedule conflicts, and meeting summaries through context-aware calendar integration.
README
Project Management MCP Server
A Model Context Protocol (MCP) server that acts as a context-aware middleware for AI assistants. It intercepts user queries, analyzes intent, fetches context from multiple productivity systems (Google Calendar, GitHub, Slack, and JIRA), assembles a structured context package, and delivers it alongside the original prompt to the Gemini AI model for hyper-relevant responses.
This repository (together with a Devpost demo video) forms the submission for the Build-Your-Own-MCP Challenge.
Table of Contents
- High-Level Workflow
- Key Capabilities
- Architecture
- Integrations & Required Credentials
- Installation & Setup
- Running the Server & UI
- Available MCP Tools
- Submission Checklist
- Project Structure
- Troubleshooting
- License & Contact
High-Level Workflow
- Intercept user queries (via MCP client, CLI, or Streamlit dashboard).
- Analyze intent with an NLP-powered
QueryAnalyzer(intent detection, entity extraction, domain classification, temporal parsing). - Fetch supplemental context from the relevant data sources.
- Assemble a ranked & summarized context package using caching, ranking, summarization, and correlation engines.
- Deliver the context bundle and original prompt to Gemini for the final response.
Key Capabilities
Intelligent Query Understanding
- Detects calendar, GitHub, Slack, and JIRA domains (or multi-domain queries).
- Extracts entities such as repositories, PR/issue counts, calendar dates, backlog keywords, etc.
- Supports relative and absolute time references via a time-aware analyzer.
Multi-Source Context Gathering
- Google Calendar: Events, availability, conflicts, and multi-calendar aggregation.
- GitHub: Repositories, issues, PRs, commits, deployments, README summaries.
- Slack: Channels, mentions, unread messages, recent activity.
- JIRA: Boards, assigned issues, backlog items, sprint insights.
Context Packaging
- ContextCache: TTL-based cache to minimize redundant API calls.
- ContextRanker: Prioritizes the most relevant events/issues per query.
- ContextSummarizer: Compresses context to stay within token budgets.
- ContextCorrelator: Cross-links signals across services (e.g., meetings vs. deployments vs. Slack alerts).
Delivery via Gemini
- Aggregated context + user prompt → Gemini (primarily
gemini-2.5-flash) to craft a tailored response.
Architecture
┌──────────────────────────┐
│ User Request │
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ Query Analyzer │ ← intent detection, entities, time range
└────────────┬─────────────┘
│
┌──────────┼───────────┐
│ │ │
▼ ▼ ▼
Calendar GitHub Slack JIRA
Client Client Client Client
(fetch) (fetch) (fetch) (fetch)
│ │ │ │
└──────────┴───────────┴─────────┘
│
▼
┌──────────────────────────┐
│ Cache / Rank / Summarize │
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ Gemini Client (Chat) │ → context + prompt → AI answer
└──────────────────────────┘
Integrations & Required Credentials
| Service | Credentials / Env Vars | Notes |
|---|---|---|
| Google Calendar | config/credentials.json, config/token.json (generated) |
OAuth desktop credentials with Calendar scopes |
| GitHub | .env → GITHUB_TOKEN |
Personal Access Token with repo scope |
| Slack | .env → SLACK_USER_TOKEN |
User token with channels:read, channels:history, groups:*, im:*, search:read, users:read |
| JIRA | .env → JIRA_BASE_URL, JIRA_EMAIL, JIRA_API_TOKEN |
Jira Cloud site, email, and API token |
| Gemini | .env → GEMINI_API_KEY |
Google AI Studio API key |
Optional environment variables (with defaults in code):
GOOGLE_CREDENTIALS_PATH(defaultconfig/credentials.json)GOOGLE_TOKEN_PATH(defaultconfig/token.json)CALENDAR_TIMEZONE(used for time parsing defaults)
Make sure sensitive files (credentials and tokens) stay out of version control. .gitignore already excludes them.
Installation & Setup
-
Clone the repository
git clone <repo-url> cd MCP\ server -
Create & activate a Python environment
python3 -m venv .venv source .venv/bin/activate # Windows: .venv\Scripts\activate -
Install dependencies
pip install -r requirements.txt -
Provide credentials
- Place Google OAuth desktop credentials at
config/credentials.json. - Create a
.envfile (copy.env.example) and populate the tokens/keys listed above.
- Place Google OAuth desktop credentials at
-
Authenticate Google Calendar (first run) Running the server for the first time will launch a browser window for Google OAuth and produce
config/token.json.
Running the Server & UI
1. MCP Server (JSON-RPC over stdio)
python main.py
This registers tools such as chat, get_calendar_context, get_github_repositories, get_slack_mentions, get_jira_backlog, etc.
2. Streamlit Dashboard (optional UI)
streamlit run streamlit_app.py
Features predefined queries, quick actions, and a custom prompt box for Calendar/GitHub/Slack/JIRA.
3. CLI Test Scripts (optional)
interactive_client.pyfor command-line chat testing.slack_test.py,jira_test.pyfor quick credential and API verification.
Available MCP Tools
| Tool | Description |
|---|---|
chat |
Main conversational endpoint; auto-fetches relevant context across all services. |
| Calendar | |
get_calendar_context |
Analyze a query and return formatted calendar context. |
check_availability |
Check availability for a specific timeslot. |
get_upcoming_events |
List upcoming events. |
detect_conflicts |
Identify conflicts on a date. |
| GitHub | |
get_github_repositories |
List repositories (with metadata). |
get_github_issues |
Fetch open issues. |
get_github_pull_requests |
Fetch PRs. |
get_github_deployments |
Retrieve deployments + status. |
| Slack | |
get_slack_channels |
List channels. |
get_slack_unread |
Channels with unread messages. |
get_slack_mentions |
Recent mentions. |
| JIRA | |
get_jira_boards |
List boards. |
get_jira_issues |
General issue retrieval (board/JQL). |
get_my_jira_issues |
Issues assigned to the authenticated user (with fallbacks). |
get_jira_backlog |
Backlog items (Agile API + JQL fallback). |
Each tool returns a formatted string suitable for direct inclusion in a context package.
Submission Checklist
✅ GitHub Repository – contains the full MCP server implementation, connectors, UI, and test scripts.
✅ Context-Aware Workflow – intercept → analyze → fetch → assemble → deliver implemented across four services.
⚠️ Devpost Video Demo – still needed. Please record a short walkthrough showing:
- How a query flows through the system (e.g., via Streamlit UI).
- The resulting context assembly (logs/UI snippets).
- The Gemini-powered responses.
- Any unique 2.0 features (caching, correlation, summarization). Upload the video to Devpost along with the repo link.
Project Structure
MCP server/
├── main.py # Entry point for MCP server
├── streamlit_app.py # Optional Streamlit UI
├── interactive_client.py # Simple CLI client
├── slack_test.py / jira_test.py# Quick integration smoke tests
├── src/
│ ├── server.py # MCP tools & orchestration layer
│ ├── query_analyzer.py # NLP intent/time/entity detection
│ ├── context_cache.py # TTL cache for API responses
│ ├── context_ranker.py # Relevance scoring
│ ├── context_summarizer.py # Compression + summarization utilities
│ ├── context_correlator.py # Multi-source correlation engine
│ ├── context_formatter.py # Human-friendly context formatting
│ ├── gemini_client.py # Gemini chat integration
│ ├── calendar_client.py # Google Calendar wrapper
│ ├── github_client.py # GitHub REST wrapper
│ ├── slack_client.py # Slack WebClient wrapper
│ ├── jira_client.py # Jira REST (Agile + Core) wrapper
│ └── connectors/ # Connector facades per service
├── config/
│ ├── credentials.json # Google OAuth client (excluded from git)
│ └── token.json # Google OAuth token (excluded from git)
├── requirements.txt
├── .env.example
└── README.md (this file)
Troubleshooting
| Issue | Resolution |
|---|---|
| Google Calendar auth loop | Delete config/token.json and rerun to reauthenticate. Ensure OAuth consent screen has you as a test user. |
| GitHub 401 | Regenerate GITHUB_TOKEN (classic PAT) with repo scope. |
Slack missing_scope |
Add required scopes under User Token Scopes and reinstall the app. |
| JIRA 410 errors | Confirm you have access to the Jira Cloud site and use valid API tokens. The client already falls back to board-based queries when search fails. |
| Gemini errors | Verify GEMINI_API_KEY is correct and the selected model is available in your region/account. |
Logging is configured to stderr to avoid interfering with MCP stdio responses.
License & Contact
Created for the Build-Your-Own-MCP Challenge.
For questions, open an issue or reach out via the Devpost discussion board when submitting your demo.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。