Google Search Console MCP Server
Provides comprehensive access to Google Search Console data with enhanced analytics capabilities, supporting up to 25,000 rows of performance data, advanced filtering with regex patterns, and automatic quick wins detection for SEO optimization opportunities.
README
Google Search Console MCP Server
A Model Context Protocol (MCP) server providing comprehensive access to Google Search Console data with enhanced analytics capabilities.
Sponsored by
<a href="https://macuse.app"> <img src="https://macuse.app/logo.png" width="100" alt="Macuse"> </a>
Features
- Enhanced Search Analytics: Retrieve up to 25,000 rows of performance data
- Advanced Filtering: Support for regex patterns and multiple filter operators
- Quick Wins Detection: Automatically identify optimization opportunities
- Rich Dimensions: Query, page, country, device, and search appearance analysis
- Flexible Date Ranges: Customizable reporting periods with historical data access
Prerequisites
- Node.js 18 or later
- Google Cloud Project with Search Console API enabled
- Service Account credentials with Search Console access
Installation
Installing via Smithery
To install Google Search Console for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-server-gsc --client claude
Manual Installation
npm install mcp-server-gsc
Authentication Setup
To obtain Google Search Console API credentials:
- Visit the Google Cloud Console
- Create a new project or select an existing one
- Enable the API:
- Go to "APIs & Services" > "Library"
- Search for and enable "Search Console API"
- Create credentials:
- Navigate to "APIs & Services" > "Credentials"
- Click "Create Credentials" > "Service Account"
- Fill in the service account details
- Create a new key in JSON format
- The credentials file (.json) will download automatically
- Grant access:
- Open Search Console
- Add the service account email (format: name@project.iam.gserviceaccount.com) as a property administrator
Usage
Claude Desktop Configuration
{
"mcpServers": {
"gsc": {
"command": "npx",
"args": ["-y", "mcp-server-gsc"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/credentials.json"
}
}
}
}
Available Tools
search_analytics
Get comprehensive search performance data from Google Search Console with enhanced analytics capabilities.
Required Parameters:
siteUrl: Site URL (format:http://www.example.com/orsc-domain:example.com)startDate: Start date (YYYY-MM-DD)endDate: End date (YYYY-MM-DD)
Optional Parameters:
dimensions: Comma-separated list (query,page,country,device,searchAppearance,date)type: Search type (web,image,video,news,discover,googleNews)aggregationType: Aggregation method (auto,byNewsShowcasePanel,byProperty,byPage)rowLimit: Maximum rows to return (default: 1000, max: 25000)dataState: Data freshness (allorfinal, default:final)
Filter Parameters:
pageFilter: Filter by page URL (supports regex withregex:prefix)queryFilter: Filter by search query (supports regex withregex:prefix)countryFilter: Filter by country ISO 3166-1 alpha-3 code (e.g.,USA,CHN)deviceFilter: Filter by device type (DESKTOP,MOBILE,TABLET)searchAppearanceFilter: Filter by search feature (e.g.,AMP_BLUE_LINK,AMP_TOP_STORIES)filterOperator: Operator for filters (equals,contains,notEquals,notContains,includingRegex,excludingRegex)
Quick Wins Detection:
detectQuickWins: Enable automatic detection of optimization opportunities (default:false)quickWinsConfig: Configuration for quick wins detection:positionRange: Position range to consider (default:[4, 20])minImpressions: Minimum impressions threshold (default:100)minCtr: Minimum CTR percentage (default:1)
Example - Basic Query:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,page",
"rowLimit": 5000
}
Example - Advanced Filtering with Regex:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "page,query",
"queryFilter": "regex:(AI|machine learning|ML)",
"filterOperator": "includingRegex",
"deviceFilter": "MOBILE",
"rowLimit": 10000
}
Example - Quick Wins Detection:
{
"siteUrl": "https://example.com",
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"dimensions": "query,page",
"detectQuickWins": true,
"quickWinsConfig": {
"positionRange": [4, 15],
"minImpressions": 500,
"minCtr": 2
}
}
License
MIT
Contributing
Contributions are welcome! Please read our contributing guidelines before submitting pull requests.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。