Google Toolbox

Google Toolbox

Google Toolbox

Category
访问服务器

Tools

create_event

Create a new calendar event

update_event

Update an existing calendar event

list_emails

List recent emails from Gmail inbox

search_emails

Search emails with advanced query

send_email

Send a new email

modify_email

Modify email labels (archive, trash, mark read/unread, etc.)

list_events

List upcoming calendar events

delete_event

Delete a calendar event

search_google

Perform a Google search and return formatted results

read_gdrive_file

Read contents of a file from Google Drive

search_gdrive

Search for files in Google Drive

README

py-mcp-google-toolbox

smithery badge Version License

An MCP server that provides AI assistants with powerful tools to interact with Google services, including Gmail, Google Calendar, Google Drive, and Google Search.

<a href="https://glama.ai/mcp/servers/@jikime/py-mcp-google-toolbox"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@jikime/py-mcp-google-toolbox/badge" alt="Google Toolbox MCP server" /> </a>

Overview

py-mcp-google-toolbox provides the following Google-related functionalities:

  • Gmail operations (read, search, send, modify)
  • Google Calendar management (events creation, listing, updating, deletion)
  • Google Drive interactions (search, read files)
  • Google Search integration (search web)

Table of Contents

Prerequisites

  1. Python: Install Python 3.12 or higher
  2. Google Cloud Console Setup:
    • Go to Google Cloud Console
    • Create a new project or select an existing one
    • Enable the Service API:
      1. Go to "APIs & Services" > "Library"
      2. Search for and enable "Gmail API"
      3. Search for and enable "Google Calendar API"
      4. Search for and enable "Google Drive API"
      5. Search formand enable "Custom Search API"
    • Set up OAuth 2.0 credentials from GCP:
      1. Go to "APIs & Services" > "Credentials"
      2. Click "Create Credentials" > "OAuth client ID"
      3. Choose "Web application"
      4. Note down the Client ID and Client Secret
        • Client ID
        • Client Secret
      5. download secret json and rename to credentials.json
    • Generate an API key
  3. Go to Custom Search Engine and get its ID

Installation

Git Clone

git clone https://github.com/jikime/py-mcp-google-toolbox.git
cd py-mcp-google-toolbox

Configuration

  1. Install UV package manager:
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create and activate virtual environment:
uv venv -p 3.12
source .venv/bin/activate  # On MacOS/Linux
# or
.venv\Scripts\activate  # On Windows
  1. Install dependencies:
uv pip install -r requirements.txt
  1. Get refresh token (if token is expired, you can run this)
uv run get_refresh_token.py

This will:

  • Open your browser for Google OAuth authentication
  • Request the following permissions:
    • https://www.googleapis.com/auth/gmail.modify
    • https://www.googleapis.com/auth/calendar
    • https://www.googleapis.com/auth/gmail.send
    • https://www.googleapis.com/auth/gmail.readonly
    • https://www.googleapis.com/auth/drive
    • https://www.googleapis.com/auth/drive.file
    • https://www.googleapis.com/auth/drive.readonly
  • Save the credentials to token.json
  • Display the refresh token in the console
  1. Environment variables:
cp env.example .env
vi .env
# change with your key
GOOGLE_API_KEY=your_google_api_key
GOOGLE_CSE_ID=your_custom_search_engine_id
GOOGLE_CLIENT_ID=your_google_client_id
GOOGLE_CLIENT_SECRET=your_google_client_secret
GOOGLE_REFRESH_TOKEN=your_google_refresh_token
  1. copy credentials.json to project root folder (py-mcp-google-toolbox)

Using Docker

  1. Build the Docker image:
docker build -t py-mcp-google-toolbox .
  1. Run the container:
docker run py-mcp-google-toolbox

Using Local

  1. Run the server:
mcp dev server.py

Configure MCP Settings

Add the server configuration to your MCP settings file:

Claude desktop app

  1. To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-google-toolbox --client claude
  1. To install manually open ~/Library/Application Support/Claude/claude_desktop_config.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-google-toolbox",
        "run",
        "server.py"
      ]
    }
  }
}

Cursor IDE

open ~/.cursor/mcp.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-google-toolbox",
        "run",
        "server.py"
      ]
    }
  }
}

for Docker

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "py-mcp-google-toolbox"
      ]
    }
  }
}

Tools Documentation

Gmail Tools

  • list_emails: Lists recent emails from Gmail inbox with filtering options
  • search_emails: Performs advanced Gmail searches with detailed email content retrieval
  • send_email: Composes and sends emails with support for CC, BCC recipients
  • modify_email: Changes email states (read/unread, archived, trashed) by modifying labels

Calendar Tools

  • list_events: Retrieves upcoming calendar events within specified time ranges
  • create_event: Creates new calendar events with attendees, location, and description
  • update_event: Modifies existing calendar events with flexible parameter updating
  • delete_event: Removes calendar events by event ID

Drive Tools

  • read_gdrive_file: Reads and retrieves content from Google Drive files
  • search_gdrive: Searches Google Drive for files with customizable queries

Search Tools

  • search_google: Performs Google searches and returns formatted results

Development

For local testing, you can use the included client script:

# Example: List emails
uv run client.py list_emails max_results=5 query="is:unread"

# Example: Search emails
uv run client.py search_emails query="from:test@example.com"

# Example: Send email
uv run client.py send_email to="test@example.com" subject="test mail" body="Hello"

# Example: Modify email
uv run client.py modify_email id=MESSAGE_ID remove_labels=INBOX add_labels=ARCHIVED

# Example: List events
uv run client.py list_events time_min=2025-05-01T00:00:00+09:00 time_max=2025-05-02T23:59:59+09:00 max_results=5

# Example: Create event
uv run client.py create_event summary="new event" start=2025-05-02T10:00:00+09:00 end=2025-05-02T11:00:00+09:00 attendees="user1@example.com,user2@example.com"

# Example: Update event
uv run client.py update_event event_id=EVENT_ID summary="update event" start=2025-05-02T10:00:00+09:00 end=2025-05-02T11:00:00+09:00 attendees="user1@example.com,user2@example.com"

# Example Delete event
uv run client.py delete_event event_id=EVENT_ID

# Example: Search Google
uv run client.py search_google query="what is the MCP?"

# Example: Search Google Drive
uv run client.py search_gdrive query=mcp

# Example: Read file
uv run client.py read_gdrive_file file_id=1234567890

License

MIT License

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选