
Goose App Maker MCP
This MCP server allows users to create, manage, and serve web applications through Goose, storing apps in configurable directories and providing web app serving capabilities.
README
Goose App Maker
This MCP (Model Context Protocol) sever allows users to create, manage, and serve web applications through Goose.
Features
- Create new web applications from basic instructions
- Store apps in
~/.config/goose/app-maker-apps
directory (each app in its own subdirectory) - Serve web applications locally on demand
- Open web applications in the default browser (and chromeless if possible)
- Lists all available web applications
- make apps that can themselves use goose as a generic backend
Examples
Run productivity apps and dynamic dashboards
goose keeps track of your apps:
<img width="682" alt="Screenshot 2025-04-28 at 7 35 46 pm" src="https://github.com/user-attachments/assets/6799833d-1edb-48f3-9061-656383f646fd" />
Load data via goose (re-using its extensions)
Make apps on demand
<img width="400" alt="Screenshot 2025-04-28 at 6 24 09 pm" src="https://github.com/user-attachments/assets/5b2d0a5b-9012-4f67-80e1-e61641bdb45a" />
<img width="300" alt="Screenshot 2025-04-28 at 6 31 06 pm" src="https://github.com/user-attachments/assets/a856fc51-8476-4e39-afbb-99302f7e43c7" />
Show rich tabular or list data as well
<img width="722" alt="Screenshot 2025-04-28 at 6 32 22 pm" src="https://github.com/user-attachments/assets/068e6dce-48b1-4fc0-b769-114961302d69" />
Usage from source
eg in goose:
# Run directly from source
uv --directory $PWD run python main.py
IMPORTANT: this MCP is required to be run in the goose desktop app at the moment (as it accesses goose-server/goosed)
Building and publishing
Optional: Build in a clean environment using uv
uv venv .venv
source .venv/bin/activate
uv pip install build
python -m build
Publishing
- Update version in
pyproject.toml
:
[project]
version = "x.y.z" # Update this
- Build the package:
# Clean previous builds
rm -rf dist/*
python -m build
- Publish to PyPI:
# Install twine if needed
uv pip install twine
# Upload to PyPI
python -m twine upload dist/*
How it works
This MCP serves up apps, but also allows them to talk to goose via goosed and their own session:
Overview
The system implements a non-blocking, asynchronous request-response pattern that allows web applications to send requests to Goose and receive responses without blocking the main thread. This is achieved through a combination of:
- A blocking endpoint on the server side
- Asynchronous JavaScript on the client side
- A response storage mechanism with thread synchronization
Web App Structure
Web apps are made (or downloaded) on request, based on resources/templates.
Each web app is stored in its own directory under ~/.config/goose/app-maker-apps
with the following structure:
app-name/
├── goose-app-manifest.json # App metadata
├── index.html # Main HTML file
├── style.css # CSS styles
├── script.js # JavaScript code
└── goose_api.js # allows the apps to access goose(d) for deeper backend functionality
└── ... # Other app files
The goose-app-manifest.json
file contains metadata about the app, including:
- name: Display name of the app
- type: Type of app (e.g., "static", "react", etc.)
- description: Brief description of the app
- created: Timestamp when the app was created
- files: List of files in the app
1. Client-Side Request Flow
When a client wants to get a response from Goose:
┌─────────┐ ┌─────────────────┐ ┌───────────────┐ ┌──────────────┐
│ User │────▶│ gooseRequestX() │────▶│ Goose API │────▶│ waitForResp- │
│ Request │ │ (text/list/ │ │ (/reply) │ │ onse endpoint │
└─────────┘ │ table) │ └───────────────┘ └──────────────┘
└─────────────────┘ │
▲ │
│ │
└────────────────────────────────────────────┘
Response
- The user initiates a request (e.g., clicking "Get List Response")
- The client calls one of the request functions (
gooseRequestText
,gooseRequestList
, orgooseRequestTable
) - The function generates a unique
responseId
and sends a request to Goose with instructions to callapp_response
with this ID - The function then calls
waitForResponse(responseId)
which polls the/wait_for_response/{responseId}
endpoint - This endpoint blocks until the response is available or a timeout occurs
- When the response is available, it's returned to the client and displayed
2. Server-Side Processing
On the server side:
┌─────────────┐ ┌─────────────┐ ┌───────────────┐
│ HTTP Server │────▶│ app_response│────▶│ response_locks│
│ (blocking │ │ (stores │ │ (notifies │
│ endpoint) │◀────│ response) │◀────│ waiters) │
└─────────────┘ └─────────────┘ └───────────────┘
- The
/wait_for_response/{responseId}
endpoint uses condition variables to block until a response is available - When Goose processes the request, it calls the
app_response
function with the response data and theresponseId
- The
app_response
function stores the response in theapp_responses
dictionary and notifies any waiting threads using the condition variable - The blocked HTTP request is then unblocked and returns the response to the client
3. Thread Synchronization
The system uses Python's threading.Condition
for thread synchronization:
- When a client requests a response that isn't available yet, a condition variable is created for that
responseId
- The HTTP handler thread waits on this condition with a timeout (30 seconds)
- When the response becomes available, the condition is notified
- If the timeout expires before the response is available, an error is returned
Key Components
Client-Side Functions
gooseRequestText(query)
: Requests a text responsegooseRequestList(query)
: Requests a list responsegooseRequestTable(query, columns)
: Requests a table response with specified columnswaitForResponse(responseId)
: Waits for a response with the given ID
Server-Side Functions
app_response(response_id, string_data, list_data, table_data)
: Stores a response and notifies waiters- HTTP handler with
/wait_for_response/{responseId}
endpoint: Blocks until response is available
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。