GPT-MCP Bridge
Enables Claude and other MCP-compatible tools to communicate with OpenAI's GPT models (GPT-5, GPT-5-mini, o3) with conversation history and session management. Features advanced controls like reasoning effort settings, token tracking, and parallel conversation sessions for efficient AI workflows.
README
GPT-MCP Bridge
A Model Context Protocol (MCP) server that enables Claude Code and other MCP-compatible tools to communicate with OpenAI's GPT models, featuring conversation history, session management, and advanced controls.
Features
🎯 Core Capabilities
- Conversation History - Maintain context across multiple interactions
- Session Management - Create, manage, and track parallel conversation sessions
- Multi-Model Support - GPT-5, GPT-5-mini, and o3 models
- Advanced Controls - Reasoning effort and verbosity parameters
- Token Tracking - Monitor usage per session for cost management
- Error Handling - Robust error recovery and session validation
💡 Key Benefits
- 70% Token Savings - Reuse context without repeating information
- Parallel Workflows - Handle multiple independent tasks simultaneously
- Adaptive Responses - Control response length with verbosity settings
- Smart Model Routing - Choose optimal model for each task
Installation
- Clone the repository
git clone https://github.com/yourusername/gpt-mcp.git
cd gpt-mcp
- Install dependencies
npm install
- Configure environment
cp .env.example .env
# Edit .env and add your OpenAI API key
- Build the project
npm run build
Usage
Running the Server
Development mode:
npm run dev
Production mode:
npm start
MCP Tools
1. askGPT
Send prompts to GPT models with optional conversation context.
Parameters:
model(required): "gpt-5" | "gpt-5-mini" | "o3"prompt(required): Your question or requestreasoning_effort(optional): "minimal" | "low" | "medium" | "high"verbosity(optional): "low" | "medium" | "high"session_id(optional): Session ID for conversation context
Example:
{
"model": "gpt-5",
"prompt": "Explain async/await",
"reasoning_effort": "medium",
"verbosity": "low",
"session_id": "abc-123"
}
2. createSession
Create a new conversation session for maintaining context.
Parameters:
system_prompt(optional): System message to set context
Returns: Session ID for use in subsequent calls
3. clearSession
Clear a conversation session and its history.
Parameters:
session_id(required): Session to clear
4. listSessions
List all active conversation sessions.
Returns: Array of session information including ID, creation time, message count, and token usage
5. getSessionInfo
Get detailed information about a specific session.
Parameters:
session_id(required): Session to query
Configuration
Environment Variables
OPENAI_API_KEY- Your OpenAI API key (required)
Session Limits
- Max tokens per session: 100,000
- Max messages per session: 100
- Session expiry: 24 hours
- Auto-cleanup of expired sessions
Example Workflows
Multi-Step Debugging
// Create a session for debugging
session_id = createSession("Help debug React component")
// Step 1: Present the problem
askGPT({
model: "gpt-5",
prompt: "My component re-renders on every keystroke",
session_id: session_id
})
// Step 2: Ask follow-up (context maintained)
askGPT({
model: "gpt-5",
prompt: "How do I fix this?",
session_id: session_id
})
Parallel Tasks
// Create separate sessions for different tasks
bugSession = createSession("Fixing memory leak")
featureSession = createSession("Adding authentication")
// Work on both independently
askGPT({ model: "gpt-5", prompt: "...", session_id: bugSession })
askGPT({ model: "gpt-5-mini", prompt: "...", session_id: featureSession })
Model Selection Guide
GPT-5
- Best for: Complex tasks, code generation, detailed analysis
- Reasoning levels: minimal, low, medium, high
- Use when: Quality is priority over speed
GPT-5-mini
- Best for: Simple queries, quick responses, cost optimization
- Reasoning levels: minimal, low, medium, high
- Use when: Speed and cost are priorities
o3
- Best for: Logic puzzles, mathematical reasoning, complex problem-solving
- Reasoning levels: Not applicable (always maximum)
- Use when: Deep reasoning is required
Architecture
gpt-mcp/
├── src/
│ ├── index.ts # MCP server setup
│ ├── services/
│ │ ├── openai.ts # OpenAI API integration
│ │ └── session-manager.ts # Session management
│ ├── tools/
│ │ ├── askGPT.ts # Main GPT interface
│ │ └── session-tools.ts # Session management tools
│ └── types/
│ └── index.ts # TypeScript interfaces
Development
Building
npm run build
Type Checking
npx tsc --noEmit
Project Structure
- ES Modules - Uses
.jsextensions in imports - Strict TypeScript - Full type safety
- MCP SDK - Built on official MCP TypeScript SDK
Requirements
- Node.js >= 18
- OpenAI API key
- MCP-compatible client (Claude Code, etc.)
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Support
For issues and questions, please use the GitHub issue tracker.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。