gqai
gqai
README
gqai
graphql → ai
gqai is a lightweight proxy that exposes GraphQL operations as
Model Context Protocol (MCP) tools for AI like
Claude, Cursor, and ChatGPT.
Define tools using regular GraphQL queries/mutations against your GraphQL backend, and gqai automatically
generates an MCP server for you.
🔌 Powered by your GraphQL backend
⚙️ Driven by .graphqlrc.yml + plain .graphql files
✨ Features
- 🧰 Define tools using GraphQL operations
- 🗂 Automatically discover operations from
.graphqlrc.yml - 🧾 Tool metadata compatible with OpenAI function calling / MCP
🛠️ Installation
go install github.com/fotoetienne/gqai@latest
🚀 Quick Start
- Create a .graphqlrc.yml:
schema: https://graphql.org/graphql/
documents: .
This file tells gqai where to find your GraphQL schema and operations.
Note: The schema parameter tells gqai where to execute the operations. This must be a live server rather than a static schema file
- Add a GraphQL operation
get_all_films.graphql:
# Get all Star Wars films
query get_all_films {
allFilms {
films {
title
episodeID
}
}
}
- Add gqai to your
mcp.jsonfile:
"gqai": {
"command": "gqai",
"args": [
"run",
"--config"
".graphqlrc.yml"
]
}
That's it! Your AI model can now call the get_all_films tool.
🧪 CLI Testing
Call a tool via CLI to test:
gqai tools/call get_all_films
This will execute the get_all_films tool and print the result.
{
"data": {
"allFilms": {
"films": [
{
"id": 4,
"title": "A New Hope"
},
{
"id": 5,
"title": "The Empire Strikes Back"
},
{
"id": 6,
"title": "Return of the Jedi"
},
...
]
}
}
}
Call a tool with arguments:
Create a GraphQL operation that takes arguments, and these will be the tool inputs:
get_film_by_id.graphql:
query get_film_by_id($id: ID!) {
film(filmID: $id) {
episodeID
title
director
releaseDate
}
}
Call the tool with arguments:
gqai tools/call get_film_by_id '{"id": "1"}'
This will execute the get_film_by_id tool with the provided arguments.
{
"data": {
"film": {
"episodeID": 1,
"title": "A New Hope",
"director": "George Lucas",
"releaseDate": "1977-05-25"
}
}
}
📦 Tool Metadata
Auto-generated tool specs for each operation, so you can plug into any LLM that supports tool use.
🤖 Why gqai?
gqai makes it easy to turn your GraphQL backend into a model-ready tool layer — no code, no extra infra. Just define your operations and let AI call them.
📜 License
MIT — fork it, build on it, all the things.
👋 Author
Made with ❤️ and 🤖vibes by Stephen Spalding && <your-name-here>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。