granola-mcp
Enables semantic search and insight extraction across Granola meeting notes, categorizing content into themes like pain points and decisions. It provides AI assistants with tools to query meeting transcripts, summaries, and speaker-attributed quotes via a local vector index.
README
granola-mcp
MCP server for semantic search across Granola meeting notes. Extracts insights, themes (pain-points, feature-requests, decisions, etc.), and key quotes with speaker attribution. Uses LanceDB for fast local vector search.
Based on reverse engineering research by Joseph Thacker and getprobo.
Features
- Export: Extract all your Granola meetings with transcripts
- Semantic Search: Vector-indexed search across meetings with pre-extracted insights
- Speaker Attribution: Distinguishes between host (
me) and participants - Theme Extraction: Auto-categorizes content into themes (pain-points, feature-requests, etc.)
- MCP Server: Exposes search to Claude Code, Claude Desktop, and other AI tools
Prerequisites
- Node.js 18+
- Granola desktop app installed and logged in
- OpenAI API key (for embeddings and insight extraction)
Installation
npm install
npm run build
Quick Start
# One command to sync everything (export + index)
OPENAI_API_KEY=sk-... node dist/index.js sync
# Or with a custom data directory
OPENAI_API_KEY=sk-... node dist/index.js sync ./my-data
# Test search
OPENAI_API_KEY=sk-... node dist/index.js search "user pain points"
CLI Commands
Sync (Recommended)
The easiest way to keep your data up to date - exports from Granola and rebuilds the index in one step:
OPENAI_API_KEY=sk-... node dist/index.js sync
# With options
OPENAI_API_KEY=sk-... node dist/index.js sync ./my-data
OPENAI_API_KEY=sk-... node dist/index.js sync --skip-extraction # Faster, reuses existing insights
Export from Granola
Export only (without indexing):
node dist/index.js export ./output
node dist/index.js export ./output --format markdown
node dist/index.js export ./output --format json
Build Search Index
# Full indexing with insight extraction (~$0.02/document)
OPENAI_API_KEY=sk-... node dist/index.js index ./export
# Skip extraction (use existing insights, just rebuild embeddings)
OPENAI_API_KEY=sk-... node dist/index.js index ./export --skip-extraction
Search from CLI
OPENAI_API_KEY=sk-... node dist/index.js search "pricing concerns"
OPENAI_API_KEY=sk-... node dist/index.js search "feature requests" --folder "User interviews"
Export for ChatGPT
OPENAI_API_KEY=sk-... node dist/index.js export-combined ./chatgpt.md
OPENAI_API_KEY=sk-... node dist/index.js export-combined ./chatgpt.md --query "user feedback"
Other Commands
node dist/index.js list # List documents
node dist/index.js workspaces # List workspaces
node dist/index.js folders # List folders
node dist/index.js transcript <id> # Get specific transcript
MCP Server Setup
Claude Code
Add to .mcp.json in your project:
{
"mcpServers": {
"granola": {
"type": "stdio",
"command": "node",
"args": ["/path/to/granola-mcp/dist/mcp/server.js"],
"env": {
"GRANOLA_DATA_DIR": "/path/to/granola-mcp/export",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"granola": {
"command": "node",
"args": ["/path/to/granola-mcp/dist/mcp/server.js"],
"env": {
"GRANOLA_DATA_DIR": "/path/to/granola-mcp/export",
"OPENAI_API_KEY": "sk-..."
}
}
}
}
MCP Tools
| Tool | Description |
|---|---|
search |
Semantic search across meetings, returns summaries + quotes |
search_themes |
Find documents by theme (pain-points, feature-requests, etc.) |
list_folders |
List all folders with document counts |
list_documents |
List documents with brief summaries |
get_document |
Get full document details (all themes + quotes) |
get_transcript |
Get raw transcript (use sparingly) |
get_themes |
List available themes with definitions |
Speaker Attribution
The system distinguishes between speakers:
speaker: "me"- The meeting host (you)speaker: "participant"- Other people in the meeting
This helps AI understand what's your own idea vs external feedback.
Pre-defined Themes
- pain-points: User frustrations, problems, complaints
- feature-requests: Desired features, wishlist items
- positive-feedback: What users liked, praised
- pricing: Cost concerns, value perception
- competition: Competitor mentions, alternatives
- workflow: How users currently do things
- decisions: Key decisions made, action items
- questions: Open questions needing clarification
Output Structure
export/
├── vectors.lance/ # LanceDB vector index
├── Meeting_Title_1/
│ ├── document.json # Raw document data
│ ├── notes.md # Converted notes
│ ├── transcript.json # Raw transcript with speaker info
│ ├── transcript.md # Formatted transcript
│ └── transcript.txt # Plain text transcript
└── Meeting_Title_2/
└── ...
Keeping Data Updated
The system doesn't auto-sync with Granola. Run sync manually after new meetings, or set up a cron job:
Manual Update
OPENAI_API_KEY=sk-... node dist/index.js sync
Automated Updates (Cron)
Add to your crontab (crontab -e):
# Sync every night at 2am
0 2 * * * cd /path/to/granola-mcp && OPENAI_API_KEY=sk-... /usr/local/bin/node dist/index.js sync >> /tmp/granola-sync.log 2>&1
# Or every 6 hours
0 */6 * * * cd /path/to/granola-mcp && OPENAI_API_KEY=sk-... /usr/local/bin/node dist/index.js sync >> /tmp/granola-sync.log 2>&1
macOS LaunchAgent
Create ~/Library/LaunchAgents/com.granola-mcp.sync.plist:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>com.granola-mcp.sync</string>
<key>ProgramArguments</key>
<array>
<string>/usr/local/bin/node</string>
<string>/path/to/granola-mcp/dist/index.js</string>
<string>sync</string>
</array>
<key>EnvironmentVariables</key>
<dict>
<key>OPENAI_API_KEY</key>
<string>sk-...</string>
</dict>
<key>StartCalendarInterval</key>
<dict>
<key>Hour</key>
<integer>2</integer>
<key>Minute</key>
<integer>0</integer>
</dict>
<key>StandardOutPath</key>
<string>/tmp/granola-sync.log</string>
<key>StandardErrorPath</key>
<string>/tmp/granola-sync.log</string>
</dict>
</plist>
Load it with: launchctl load ~/Library/LaunchAgents/com.granola-mcp.sync.plist
How It Works
-
Export: Reads credentials from
~/Library/Application Support/Granola/supabase.jsonand fetches all documents via Granola's API -
Index:
- Extracts themes and key quotes using GPT-4o-mini
- Generates embeddings using text-embedding-3-small
- Stores in LanceDB for fast vector search
-
Search:
- Embeds your query
- Finds semantically similar documents
- Returns summaries + relevant quotes (not raw transcripts)
Cost Estimates
| Documents | Insight Extraction | Embeddings | Total |
|---|---|---|---|
| 25 | ~$0.50 | ~$0.01 | ~$0.51 |
| 100 | ~$2.00 | ~$0.02 | ~$2.02 |
| 500 | ~$10.00 | ~$0.10 | ~$10.10 |
Search queries are free (vector similarity, no LLM calls).
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。