Graph-Tools
Provides tools for AI-powered graph analysis, including relationship extraction, adjacency matrix creation, and network centrality calculations. It enables users to perform complex structural analysis and generate interactive D3.js visualizations from structured data.
README
Graph Tools - Interactive Graph Analysis Toolkit
A comprehensive Ruby-based graph analysis toolkit with web visualizations and MCP server for AI-powered graph analysis.
🚀 Features
Core Graph Operations
- Adjacency Matrix Support - Load from CSV, JSON, or TXT files
- Graph Algorithms - DFS, BFS, neighbor finding with visual feedback
- Multiple Export Formats - CSV matrices, JSON, interactive HTML
- Command Line Interface - Full-featured CLI for batch operations
Interactive Visualizations
- Enhanced Graph Visualizer - D3.js force-directed layouts with real-time interactions
- Algorithm Visualization - Visual highlighting for DFS/BFS traversals
- Interactive Editing - Add/remove nodes and edges with drag-and-drop
- Matrix Export - Custom filename support for adjacency matrix downloads
- Graph Statistics - Real-time node count, edge count, and density calculations
AI Integration
- MCP Server - HTTP REST API and Claude Desktop MCP server
- Automatic Visualization - Generate interactive graphs from structured data
- Smart Data Processing - Extract relationships from various data formats
- Centrality Analysis - Calculate degree, betweenness, closeness, eigenvector centrality
📦 Installation
Prerequisites
- Ruby 2.7+ - Core graph operations
- Node.js 16+ - MCP server functionality
- Modern web browser - For interactive visualizations
Setup
git clone https://github.com/dromologue/Graph-Tools.git
cd Graph-Tools
# For local CLI usage
gem install
# Install MCP server dependencies
cd mcp-graph-server
npm install
cd ..
# For web application
npm install
🔧 Usage
Command Line Interface
# Basic graph visualization
ruby graph_cli.rb matrix.csv
# With custom vertex labels
ruby graph_cli.rb -v "A,B,C,D" matrix.csv
# Run graph algorithms
ruby graph_cli.rb --dfs A --bfs B matrix.csv
# Export to web visualization
ruby graph_cli.rb -d matrix.csv
# Export to JSON
ruby graph_cli.rb -j output.json matrix.csv
Interactive Visualizer
Local Usage:
- Open
Files/enhanced-graph-visualizer.htmlin your browser - Load sample data or create your own graph
- Run DFS/BFS operations with visual highlighting
- Export matrices with custom filenames
Web Application:
- Run
npm startand visithttp://localhost:3000 - Upload matrix files via drag-and-drop
- Try sample data for quick testing
- Get real-time analysis results
MCP Server Integration
HTTP REST API Mode
cd mcp-graph-server
npm run api
# Server runs on http://localhost:3001
Claude Desktop Mode
- Configure Claude Desktop (
~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"graph-server": {
"command": "node",
"args": ["/path/to/Graph-Tools/mcp-graph-server/api-server.js"],
"env": {
"SERVER_MODE": "mcp"
}
}
}
}
- Use natural language in Claude Desktop:
Analyze these relationships and create a graph visualization:
[
{"id": "Alice", "friends": ["Bob", "Carol"]},
{"id": "Bob", "friends": ["Alice", "David"]},
{"id": "Carol", "friends": ["Alice"]},
{"id": "David", "friends": ["Bob"]}
]
📁 Project Structure
Graph-Tools/
├── graph.rb # Core Graph class
├── graph_cli.rb # Command line interface
├── server.js # Web application server
├── Files/ # Visualization files directory
│ └── enhanced-graph-visualizer.html # Interactive D3.js visualizer
├── public/ # Web application files
│ ├── index.html # Main web interface
│ └── mcp-documentation.html # API documentation
├── mcp-graph-server/ # MCP server
│ ├── api-server.js # Dual-mode MCP/HTTP server
│ ├── index.js # Original MCP server
│ ├── package.json # Node.js dependencies
│ ├── claude-config-example.json # Claude Desktop config example
│ └── data/ # Generated files (matrices, visualizations)
├── Gemfile # Ruby dependencies
├── package.json # Node.js web server dependencies
└── README.md # This file
API Endpoints
The MCP server provides both MCP protocol and HTTP REST API:
POST /api/analyze-relationships- Extract relationships from dataPOST /api/create-adjacency-matrix- Build matrices from relationship pairsPOST /api/calculate-centrality- Compute network centrality measuresPOST /api/analyze-network-structure- Comprehensive network analysisGET /health- Health check endpoint
See /mcp-documentation.html for complete API documentation with examples.
Quick Start
1. Create a Graph Visually
# Open the Enhanced Graph Visualizer
open "Files/enhanced-graph-visualizer.html"
In the enhanced visualizer:
- Add vertices by typing names and clicking "Add Node"
- Click two nodes to select them, then click "Add Edge"
- Drag nodes to reposition them
- Run DFS/BFS operations and see visual highlights
- Export as CSV matrix when done
2. Analyze Your Graph
# Basic analysis
ruby graph_cli.rb your_graph.csv
# With custom vertex names
ruby graph_cli.rb -v "Alice,Bob,Carol,David" your_graph.csv
# Specific operations
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --dfs Alice your_graph.csv
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --bfs Bob your_graph.csv
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --neighbors Carol your_graph.csv
3. Export for Visualization
# Export for D3.js editor (interactive)
ruby graph_cli.rb -v "Alice,Bob,Carol,David" -d your_graph.csv
# Export JSON for programmatic use
ruby graph_cli.rb -v "Alice,Bob,Carol,David" -j output.json your_graph.csv
Command Reference
CLI Options
ruby graph_cli.rb [options] matrix_file
Options:
-v, --vertices LABELS # Comma-separated vertex labels
-f, --format FORMAT # Output format (text, matrix, json)
-j, --export-json FILE # Export to JSON file
-d, --d3 # Export for D3.js visualization
--dfs VERTEX # Perform DFS traversal
--bfs VERTEX # Perform BFS traversal
--neighbors VERTEX # Show neighbors
--path FROM,TO # Check edge existence
Supported File Formats
- CSV:
0,1,0\n1,0,1\n0,1,0 - TXT:
0 1 0\n1 0 1\n0 1 0(space-separated) - JSON:
{"matrix": [[0,1,0],[1,0,1],[0,1,0]]}
MCP Server Tools
The MCP server provides these tools for AI assistants:
analyze_relationships- Extract relationships from structured data and create visualizationscreate_adjacency_matrix- Build matrices from relationship pairscalculate_centrality- Compute network centrality measures (degree, betweenness, closeness, eigenvector)analyze_network_structure- Comprehensive network analysis combining relationship extraction and centrality
Performance
- Graph creation: Sub-second for graphs up to 100 nodes
- DFS/BFS: Linear time complexity O(V + E)
- Visualization: Handles 50+ nodes smoothly in D3.js
- File formats: All formats (CSV, JSON, TXT) supported efficiently
- HTTP API: Fast response times for network analysis
Error Handling
The tools provide comprehensive error handling for:
- Invalid matrix formats
- Non-existent vertices in operations
- Malformed input files
- Missing dependencies
- API validation errors
Contributing
The codebase follows clean architecture principles with separation of concerns:
- Core graph operations in Ruby
- Web interface with modern JavaScript
- MCP server for AI integration
- Comprehensive API documentation
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。