Graphiti-Memory MCP Server
Enables storing and querying memories in a Neo4j knowledge graph with automatic entity extraction. Supports adding episodes, searching entities and relationships, and managing graph data through natural language.
README
Graphiti-Memory MCP Server
A Model Context Protocol (MCP) server that provides memory and knowledge graph operations using Neo4j and the Graphiti framework.
Features
- 📝 Add Memories: Store episodes and information in the knowledge graph with automatic entity extraction
- 🧠 Search Nodes: Query entities in your knowledge graph using natural language
- 🔗 Search Facts: Find relationships and connections between entities
- 📚 Retrieve Episodes: Get historical episodes and memories
- 🗑️ Management Tools: Delete episodes, edges, and clear the graph
- 🤖 AI-Powered: Optional OpenAI integration for enhanced entity extraction
- 📊 Real-time Data: Direct connection to your Neo4j database
- 🛠️ Built-in Diagnostics: Comprehensive error messages and troubleshooting
Installation
Prerequisites
-
Neo4j Database: You need a running Neo4j instance
# Install Neo4j (via Homebrew on macOS) brew install neo4j # Start Neo4j neo4j start -
Python 3.10+: Required for the MCP server
Install from PyPI
pip install graphiti-memory
Install from Source
git clone https://github.com/alankyshum/graphiti-memory.git
cd graphiti-memory
pip install -e .
Configuration
MCP Configuration
Add to your MCP client configuration file (e.g., Claude Desktop config):
{
"mcpServers": {
"graphiti-memory": {
"command": "graphiti-mcp-server",
"env": {
"NEO4J_URI": "neo4j://127.0.0.1:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "your-password-here",
"OPENAI_API_KEY": "your-openai-key-here",
"GRAPHITI_GROUP_ID": "default"
}
}
}
}
Neo4j Setup
-
Set Password (first-time setup):
neo4j-admin dbms set-initial-password YOUR_PASSWORD -
Test Connection:
# HTTP interface curl http://127.0.0.1:7474 # Bolt protocol nc -zv 127.0.0.1 7687
Available Tools
1. add_memory
Add an episode or memory to the knowledge graph. This is the primary way to add information.
Example:
{
"name": "add_memory",
"arguments": {
"name": "Project Discussion",
"episode_body": "We discussed the new AI feature roadmap for Q2. Focus on improving entity extraction.",
"source": "text",
"group_id": "project-alpha"
}
}
Parameters:
name: Name of the episode (required)episode_body: Content to store - text, message, or JSON (required)source: Type of content - "text", "message", or "json" (default: "text")group_id: Optional namespace for organizing datasource_description: Optional description
2. search_memory_nodes
Search for nodes (entities) in the knowledge graph using natural language.
Example:
{
"name": "search_memory_nodes",
"arguments": {
"query": "machine learning",
"max_nodes": 10
}
}
Returns: List of nodes with UUID, name, summary, labels, and timestamps.
3. search_memory_facts
Search for facts (relationships) between entities in the knowledge graph.
Example:
{
"name": "search_memory_facts",
"arguments": {
"query": "what technologies are related to AI",
"max_facts": 10
}
}
Returns: List of fact triples with source, target, and relationship details.
4. get_episodes
Retrieve recent episodes for a specific group.
Example:
{
"name": "get_episodes",
"arguments": {
"group_id": "project-alpha",
"last_n": 10
}
}
5. delete_episode
Delete an episode from the knowledge graph.
Example:
{
"name": "delete_episode",
"arguments": {
"uuid": "episode-uuid-here"
}
}
6. delete_entity_edge
Delete a fact (entity edge) from the knowledge graph.
Example:
{
"name": "delete_entity_edge",
"arguments": {
"uuid": "edge-uuid-here"
}
}
7. get_entity_edge
Retrieve a specific entity edge by UUID.
Example:
{
"name": "get_entity_edge",
"arguments": {
"uuid": "edge-uuid-here"
}
}
8. clear_graph
Clear all data from the knowledge graph (DESTRUCTIVE).
Example:
{
"name": "clear_graph",
"arguments": {}
}
Usage
With Claude Desktop
Configure in ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"graphiti-memory": {
"command": "graphiti-mcp-server",
"env": {
"NEO4J_URI": "neo4j://127.0.0.1:7687",
"NEO4J_USER": "neo4j",
"NEO4J_PASSWORD": "your-password",
"OPENAI_API_KEY": "your-openai-key-here",
"GRAPHITI_GROUP_ID": "default"
}
}
}
}
Note: OPENAI_API_KEY is optional. Without it, entity extraction will be limited but the server will still work.
Standalone Testing
Test the server directly from command line:
export NEO4J_URI="neo4j://127.0.0.1:7687"
export NEO4J_USER="neo4j"
export NEO4J_PASSWORD="your-password"
echo '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}' | graphiti-mcp-server
Troubleshooting
Connection Failed
Error: Connection refused or ServiceUnavailable
Solutions:
- Check Neo4j is running:
neo4j status - Start Neo4j:
neo4j start - Verify port 7687 is accessible:
nc -zv 127.0.0.1 7687
Authentication Failed
Error: Unauthorized or authentication failure
Solutions:
- Verify password is correct
- Reset password:
neo4j-admin dbms set-initial-password NEW_PASSWORD - Update password in MCP configuration
- Use test tool to verify:
test_neo4j_auth
Package Not Found
Error: neo4j package not installed
This package automatically installs the neo4j dependency. If you see this error:
pip install neo4j
Development
Setup Development Environment
git clone https://github.com/alankyshum/graphiti-memory.git
cd graphiti-memory
pip install -e ".[dev]"
Running Tests
# Test the server
python -m graphiti_memory.server << 'EOF'
{"jsonrpc":"2.0","id":1,"method":"initialize","params":{}}
EOF
Architecture
MCP Client (Claude Desktop / Cline / etc.)
↓
Graphiti-Memory Server
↓
Neo4j Database
The server:
- Listens on stdin for JSON-RPC messages
- Logs diagnostics to stderr
- Responds on stdout with JSON-RPC
- Maintains persistent Neo4j connection
Contributing
Contributions welcome! Please:
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
License
MIT License - see LICENSE file for details.
Links
- GitHub: https://github.com/alankyshum/graphiti-memory
- PyPI: https://pypi.org/project/graphiti-memory/
- Issues: https://github.com/alankyshum/graphiti-memory/issues
- MCP Specification: https://modelcontextprotocol.io
Credits
Built for use with:
- Model Context Protocol (MCP)
- Neo4j
- Graphiti - Knowledge graph framework
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。