GraphQL Schema Embedder MCP Server

GraphQL Schema Embedder MCP Server

Indexes GraphQL schemas using embeddings to enable semantic search of types and fields for fast lookup. It allows LLMs to discover relevant schema signatures and execute queries against live GraphQL endpoints.

Category
访问服务器

README

GraphQL schema embedder MCP server

Python MCP server for LLMs that indexes a GraphQL schema, stores embeddings per type->field via an embeddings endpoint, and enables fast lookup plus run_query execution once relevant types are identified to fetch data from your GraphQL endpoint.

Architecture

  • GraphQL schema: provide a schema file (SDL) to exercise parsing and indexing.
  • Indexer: schema_indexer.py flattens the schema into type.field signatures (with arguments and return types), embeds each summary via the configured embeddings endpoint, and persists to data/metadata.json + data/vectors.npz (normalized embeddings for cosine search).
  • Server: server.py exposes MCP tools list_types and run_query. The server ensures the schema index exists on startup; it only calls the embeddings endpoint when reindexing or embedding a new query.
  • Persistence: data/ is .gitignore'd so you can regenerate locally without polluting the repo.

Architecture diagram

Setup

Set env vars. You can start from .env.example.

Environment configuration:

  • GRAPHQL_EMBED_API_KEY (or OPENAI_API_KEY)
  • GRAPHQL_EMBEDDINGS_URL (full embeddings URL)
  • GRAPHQL_EMBED_MODEL
  • GRAPHQL_EMBED_API_KEY_HEADER / GRAPHQL_EMBED_API_KEY_PREFIX
  • GRAPHQL_EMBED_HEADERS (JSON object string for extra headers) Endpoint auth (when using GRAPHQL_ENDPOINT_URL):
  • GRAPHQL_ENDPOINT_HEADERS (JSON object string, merged with any --header flags)
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python3 src/server.py

Run the MCP server

python3 src/server.py                # SSE on 127.0.0.1:8000/sse by default
python3 src/server.py --transport sse     # explicit SSE
python3 src/server.py --transport streamable-http  # Streamable HTTP on 127.0.0.1:8000/mcp
# Or: point at a live GraphQL endpoint (requires introspection enabled)
python3 src/server.py --endpoint https://api.example.com/graphql
# Endpoint auth headers (repeat --header)
python3 src/src/server.py --endpoint https://api.example.com/graphql --header "Authorization: Bearer $TOKEN"
# Options: --host 0.0.0.0 --port 9000 --log-level DEBUG --mount-path /myapp

Tools:

  • list_types(query, limit=5) – fuzzy search over type.field signatures (embeddings; auto-build index if missing). Results are ordered with Query fields first and include a query_template for Query fields plus a selection_hint for object fields.
  • run_query(query) – if --endpoint is set, proxies the query to the endpoint; otherwise validates/runs against the local schema (no resolvers; primarily for validation/shape checking, data resolves to null). Both indexing and querying use the same embedding model (text-embedding-3-small by default, override via config/env or --model).

Example list_types output:

[
  {
    "type": "Query",
    "field": "users",
    "summary": "Query.users(limit: Int = 10, offset: Int = 0) -> [User!]!",
    "query_template": "query { users(limit: <Int = 10>, offset: <Int = 0>) { id name email profile { joinedAt preferences { newsletter } } orders { id status total } } }"
  },
  {
    "type": "User",
    "field": "orders",
    "summary": "User.orders -> [Order!]!",
    "selection_hint": "orders { id status total items { quantity subtotal } }"
  },
  {
    "type": "Product",
    "field": "reviews",
    "summary": "Product.reviews -> [Review!]!",
    "selection_hint": "reviews { id rating title author { id name } }"
  }
]

Notes:

  • python3 src/server.py defaults to the sse transport; pass --transport streamable-http if you want HTTP instead.
  • You can also set env vars prefixed with FASTMCP_ (e.g., FASTMCP_HOST, FASTMCP_PORT, FASTMCP_LOG_LEVEL) to override defaults.
  • The server exposes MCP instructions (override with MCP_INSTRUCTIONS) that describe the server as an abstraction layer and tell the LLM to use list_types then run_query with minimal tool calls.

Quick test with the MCP Inspector

Requires npm/npx on PATH.

Connect to an already-running SSE server

In one terminal (start the server):

python3 src/server.py --transport sse --port 8000

In another terminal (start the Inspector and point it at /sse):

npx @modelcontextprotocol/inspector --transport sse --server-url http://127.0.0.1:8000/sse

Configure in Claude Desktop / CLI

If you're running this server locally over SSE (default), point Claude at the /sse URL.

claude mcp add --transport sse graphql-mcp http://127.0.0.1:8000/sse

You can also configure via JSON (e.g. config file):

{
  "mcpServers": {
    "graphql-mcp": {
      "type": "sse",
      "url": "http://127.0.0.1:8000/sse"
    }
  }
}

If you expose this server behind auth, pass headers:

claude mcp add --transport sse private-graphql http://127.0.0.1:8000/sse \
  --header "Authorization: Bearer your-token-here"

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选