Grocery Search MCP Server
Provides grocery price and nutritional information search capabilities, allowing AI agents to search for food products, compare prices, and analyze nutritional content across different grocery stores.
README
Grocery Search MCP Server
An MCP (Model Context Protocol) server that provides grocery price and nutritional information search capabilities. This server allows AI agents to search for food products, compare prices, and analyze nutritional content across different grocery stores.
Features
- Product Search: Search for grocery items by name across supported stores
- Price Comparison: Get current pricing information for food products
- Nutritional Analysis: Retrieve protein, calorie, and other macro information
- Protein-per-Dollar Ranking: Automatically rank products by protein content per dollar spent
- Store Support: Currently supports Trader Joe's (more stores coming soon)
Installation
- Clone the repository:
git clone <repository-url>
cd MCP_Food_Search
- Install dependencies:
pip install -r requirements.txt
Or install in development mode:
pip install -e .
Usage
Running the MCP Server
Start the server using:
python -m grocery_search_mcp.server
Or using the script entry point:
grocery-search-mcp
Testing the Implementation
Run the test script to verify functionality:
python test_server.py
MCP Tool Usage
The server provides one main tool:
GroceryPrices.search
Search for grocery items with price and nutritional information.
Parameters:
query(required): Food or product name to search forstore(optional): Store to search, defaults to "trader_joes"
Example:
{
"query": "protein bar",
"store": "trader_joes"
}
Response: Returns a formatted list of products with:
- Product name and brand
- Price and package size
- Protein content and calories
- Protein-per-dollar ratio
- Nutritional information status
Architecture
The server consists of several key components:
- MCP Server (
server.py): Main MCP protocol implementation - Data Models (
models.py): Pydantic models for requests/responses - Scrapers (
scraper.py): Web scraping logic for different stores - Nutrition Estimation: Basic nutritional information estimation
Current Implementation
This initial version includes:
- ✅ Basic MCP server setup
- ✅ Trader Joe's product search (mock data for now)
- ✅ Nutritional estimation based on product names
- ✅ Protein-per-dollar calculation
- ✅ Error handling and logging
Future Enhancements
- Real web scraping implementation
- Integration with USDA FoodData Central API
- Redis caching for price data
- Additional store support (Safeway, Kroger, etc.)
- Real-time inventory checking
- Advanced nutritional analysis
Contributing
This is a learning project. Feel free to submit issues and enhancement requests.
License
MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。