Grok MCP
Use XAI's latest api functionalities with Grok MCP. It supports image understanding and generation, live search, latest models and more.
README
Grok-MCP
A MCP server for xAI's Grok API, providing access to capabilities including image understanding, image generation, live web search, and reasoning models.
<a href="https://glama.ai/mcp/servers/@merterbak/Grok-MCP"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@merterbak/Grok-MCP/badge" /> </a>
🚀 Features
- Multiple Grok Models: Access to Grok-4, Grok-4-Fast, Grok-3-Mini, and more
- Image Generation: Create images using Grok's image generation models
- Vision Capabilities: Analyze images with Grok's vision models
- Live Web Search: Real-time web search with citations from news, web, X, and RSS feeds
- Reasoning Models: Advanced reasoning with extended thinking models (Grok-3-Mini, Grok-4)
- Stateful Conversations: Use this nrewly released feature to maintain conversation context as id across multiple requests
- Conversation History: Built-in support for multi-turn conversations
📋 Prerequisites
- Python 3.11 or higher
- xAI API key (Get one here)
uvpackage manager
🛠️ Installation
- Clone the repository:
git clone https://github.com/merterbak/Grok-MCP.git
cd Grok-MCP
- Install dependencies using
uv:
uv sync
🔧 Configuration
Claude Desktop Integration
Add this to your Claude Desktop configuration file:
{
"mcpServers": {
"grok": {
"command": "uv",
"args": [
"--directory",
"/path/to/Grok-MCP",
"run",
"python",
"main.py"
],
"env": {
"XAI_API_KEY": "your_api_key_here"
}
}
}
}
Usage
For stdio:
uv run python main.py
📚 Available Tools
1. list_models
List all available Grok models with creation dates and ownership information.
2. chat
Standard chat completion with extensive customization options.
Parameters:
prompt(required): Your messagemodel: Model to use (default: "grok-4-fast")system_prompt: Optional system instructionuse_conversation_history: Enable multi-turn conversationstemperature,max_tokens,top_p: Generation parameterspresence_penalty,frequency_penalty,stop: Advanced controlreasoning_effort: For reasoning models ("low" or "high")
3. chat_with_reasoning
Get detailed reasoning along with the response.
Parameters:
prompt(required): Your question or taskmodel: "grok-4", "grok-3-mini", or "grok-3-mini-fast"reasoning_effort: "low" or "high" (not for grok-4)system_prompt,temperature,max_tokens,top_p
Returns: Content, reasoning content, and usage statistics
4. chat_with_vision
Analyze images with natural language queries.
Parameters:
prompt(required): Your question about the image(s)image_paths: List of local image file pathsimage_urls: List of image URLsdetail: "auto", "low", or "high"model: Vision-capable model (default: "grok-4-0709")
Supported formats: JPG, JPEG, PNG
5. generate_image
Create images from text descriptions.
Parameters:
prompt(required): Image descriptionn: Number of images to generate (default: 1)response_format: "url" or "b64_json"model: Image generation model (default: "grok-2-image-1212")
Returns: Generated images and revised prompt
6. live_search
Search the web in real-time with source citations.
Parameters:
prompt(required): Your search querymodel: Model to use (default: "grok-4")mode: "on" or "off"return_citations: Include source citations (default: true)from_date,to_date: Date range (YYYY-MM-DD)max_search_results: Max results to fetch (default: 20)country: Country code for localized searchrss_links: List of RSS feed URLs to searchsources: Custom source configuration
Returns: Content, citations, usage stats, and number of sources used
7. stateful_chat
Maintain conversation state across multiple requests on xAI servers.
Parameters:
prompt(required): Your messageresponse_id: Previous response ID to continue conversationmodel: Model to use (default: "grok-4")system_prompt: System instruction (only for new conversations)include_reasoning: Include reasoning summarytemperature,max_tokens
Returns: Response with ID for continuing the conversation (stored for 30 days)
8. retrieve_stateful_response
Retrieve a previously stored conversation response.
Parameters:
response_id(required): The response ID to retrieve
9. delete_stateful_response
Delete a stored conversation from xAI servers.
Parameters:
response_id(required): The response ID to delete
Roadmap
- add docker support
- fix chat vision model tool
📄 License
This project is open source and available under the MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。