H1B Job Search MCP Server

H1B Job Search MCP Server

Enables searching and analyzing H-1B visa sponsoring companies using U.S. Department of Labor data. Supports filtering by job role, location, and salary with natural language queries to find direct employers and export results.

Category
访问服务器

README

H1B Job Search MCP Server

An MCP (Model Context Protocol) server that automates H-1B job searching using REAL U.S. Department of Labor LCA disclosure data. Built with FastMCP.

🚀 Live Server: https://h1b-job-search-mcp.onrender.com/mcp

Deploy to Render

✅ Real Data, Not Samples!

This server fetches actual H-1B application data directly from the U.S. Department of Labor's official disclosure files. Each dataset contains tens of thousands of real H-1B applications with:

  • Real company names (Google, Microsoft, Amazon, etc.)
  • Actual job titles and salaries
  • Real work locations and contact information
  • Certified application statuses

Data Source: https://www.dol.gov/agencies/eta/foreign-labor/performance

Features

  • 📊 Download LCA Data: Automatically downloads and caches H-1B LCA disclosure data from the Department of Labor
  • 🔍 Smart Search: Filter H-1B sponsoring companies by job role, location, and wage
  • 🏢 Company Analytics: Get detailed sponsorship statistics for specific companies
  • 📈 Top Sponsors: List top H-1B sponsoring companies by volume
  • 🚫 Agency Filtering: Automatically filter out staffing agencies to find direct employers
  • 📁 Export Results: Export filtered results to CSV for easy outreach
  • 💾 Data Caching: Intelligent caching to avoid re-downloading large datasets
  • 🤖 Multi-LLM Support: Works with Claude, ChatGPT, Gemini, Cursor, and Poke

📖 How to Use

For detailed usage examples and natural language prompts, see the Usage Guide.

Quick Examples

Just talk naturally! The ask tool understands plain English:

  • "Load the latest H-1B data"
  • "Find software engineer jobs in California paying over 150k"
  • "Tell me about Google's H-1B sponsorships"
  • "Export data scientist positions to CSV"

Available MCP Tools

1. load_h1b_data

Download and load H-1B LCA data from the Department of Labor.

  • Parameters:
    • year: Fiscal year (default: 2024)
    • quarter: Quarter 1-4 (default: 4)
    • force_download: Force re-download even if cached

2. search_h1b_jobs

Search for H-1B sponsoring companies by job role and location.

  • Parameters:
    • job_role: Job title to search (e.g., "Software Engineer")
    • city: Work city (optional)
    • state: Work state code (optional, e.g., "CA")
    • min_wage: Minimum wage filter (optional)
    • max_results: Maximum results to return
    • skip_agencies: Skip staffing agencies (default: true)

3. get_company_stats

Get detailed H-1B sponsorship statistics for a specific company.

  • Parameters:
    • company_name: Company name to analyze

4. get_top_sponsors

List top H-1B sponsoring companies by application volume.

  • Parameters:
    • limit: Number of companies to return
    • exclude_agencies: Exclude staffing agencies

5. export_results

Export filtered H-1B results to a CSV file.

  • Parameters:
    • job_role: Job title to filter
    • city: City filter (optional)
    • state: State filter (optional)
    • filename: Output filename
    • max_results: Maximum results to export

6. get_available_data

Check available LCA data periods and cached files.

7. ask (Natural Language Interface) 🎯

Talk to the H-1B search in simple English!

  • Usage: Just describe what you want in plain language
  • Examples:
    • "I'm a software engineer looking for jobs in the Bay Area"
    • "Show me data scientist positions paying over 180k"
    • "Which companies sponsor the most H-1B visas?"
    • "Tell me about Microsoft's H-1B program"

Local Development

Setup

git clone <your-repo-url>
cd mcp-server-template
conda create -n h1b-mcp python=3.13
conda activate h1b-mcp
pip install -r requirements.txt

Test with MCP Inspector

# Terminal 1: Start the server
python src/server.py

# Terminal 2: Run the inspector
npx @modelcontextprotocol/inspector

Open http://localhost:3000 and connect to http://localhost:8000/mcp using "Streamable HTTP" transport.

Example Usage Flow

  1. Load the data:

    Tool: load_h1b_data
    Parameters: {"year": 2024, "quarter": 4}
    
  2. Search for jobs:

    Tool: search_h1b_jobs
    Parameters: {
      "job_role": "Software Engineer",
      "state": "CA",
      "min_wage": 120000,
      "skip_agencies": true
    }
    
  3. Get company details:

    Tool: get_company_stats
    Parameters: {"company_name": "Google"}
    
  4. Export results:

    Tool: export_results
    Parameters: {
      "job_role": "Data Scientist",
      "state": "NY",
      "filename": "ny_data_scientists.csv"
    }
    

Deployment

Option 1: Deploy to Render

Click the "Deploy to Render" button above.

Option 2: Manual Deployment

  1. Fork this repository
  2. Connect your GitHub account to Render
  3. Create a new Web Service on Render
  4. Connect your forked repository
  5. Render will automatically detect the render.yaml configuration

Your server will be available at https://your-service-name.onrender.com/mcp

Current deployment: https://h1b-job-search-mcp.onrender.com/mcp

Multi-LLM Support

This MCP server works with multiple LLM platforms. For detailed integration instructions, see docs/LLM_INTEGRATION.md.

Quick Setup by Platform

Claude Desktop

{
  "mcpServers": {
    "h1b-search": {
      "command": "python",
      "args": ["/path/to/src/server.py"]
    }
  }
}

ChatGPT/OpenAI

Run server with PORT=8000 python src/server.py and use the OpenAPI schema in config/openai_config.json.

Google Gemini

Configure with function declarations using config/gemini_config.json.

Cursor IDE

Place config/cursor_config.json in .cursor/mcp-config.json and reload.

Interaction Poke

Use config/poke_config.json in Poke settings.

See docs/LLM_INTEGRATION.md for complete setup guides, testing procedures, and troubleshooting.

Data Source

This tool uses publicly available LCA disclosure data from the U.S. Department of Labor's Foreign Labor Certification Data Center. The data includes:

  • Employer information
  • Job titles and wages
  • Work locations
  • Case status
  • Contact information (when available)

Note: This data shows historical H-1B sponsorship patterns. Always verify current sponsorship policies with employers directly.

Privacy & Legal

  • All data used is publicly available from the U.S. Department of Labor
  • No private or confidential information is accessed
  • Use responsibly and professionally when contacting employers
  • Respect company communication preferences

Customization

Add custom filtering logic or additional tools by modifying src/server.py:

@mcp.tool
def custom_analysis(parameter: str) -> dict:
    """Your custom H-1B data analysis."""
    # Your implementation here
    pass

Troubleshooting

  • Data not loading: Check your internet connection and verify the year/quarter exists
  • No results found: Try broader search terms or check different quarters
  • Memory issues: The full dataset can be large; consider using nrows parameter in pandas
  • Cache issues: Delete the data_cache directory to force fresh downloads

Contributing

Feel free to submit issues and pull requests to improve this tool!

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选