
Hacking Buddy MCP
A proof-of-concept tool that integrates AI into security operations, allowing users to perform offensive security tasks like network scanning and reconnaissance through natural language commands to GitHub Copilot.
README
Hacking Buddy MCP
Hacking Buddy MCP is a proof-of-concept project that explores how AI can be integrated into security operations, particularly within Red Team and Pentesting workflows.
I created this tool to demonstrate practical ways in which AI can assist during offensive security engagements from reconnaissance and exploitation support to analyzing collected data. Since Red Teaming and Pentesting is where I spend most of my time, this project reflects both some of my hands-on experience and my interest in innovating with AI in the security space.
Note: This project currently includes only a few integrated tools, but I plan to add more over time as I experiment with different scenarios. My goal is to keep it fun and iterative—sharing progress as I go instead of waiting to launch a fully built-out version later.
VSCode + GitHub Copilot
This is setup including the .vscode directory which contains the mcp.json file.
- You will need to adjust the path (the last argument) in the mcp json to match your configuration.
Running the MCP server within VSCode
Running the MCP server is actually pretty easy:
- In VSCode go to the mcp.json
- Click Start above the JSON object, right above where it says "hacking-buddy-mcp"
- Open GitHub Copilot and change it's mode to Agent
- Ask it to perform one of the actions available from Hacking Buddy MCP Tools, like "Do an nmap discovery scan on this ip range 192.168.1.0/24" and "Run port scans on those hosts"
⚠ Note: If GitHub Copilot starts acting up you may need to start a new chat!
Setup
Pre-requisites
You need to have uv
and dependencies (FastMCP
) installed.
Install uv:
curl -LsSf https://astral.sh/uv/install.sh | sh
⚠️ It is highly recommended that you setup a virtual environment first!
- Run
uv venv
to create a virtual environment- Run
source .venv/bin/activate
to active the virtual enviroment
Install dependencies from pyproject.toml
This allows you to automatically install the dependencies from a file. Run:
uv pip install -r pyproject.toml
Install dependencies manually
Install FastMCP
uv pip install fastmcp
See the FastMCP GitHub.
🚧 This is an experimental project, feedback and ideas are always welcome!
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。