Hevy Workout Analytics MCP Server

Hevy Workout Analytics MCP Server

Provides Claude with SQL access to Hevy workout history and personal training conventions stored in a SQLite database. It enables detailed analysis of exercise progress, volume trends, and muscle group mappings through natural language queries.

Category
访问服务器

README

Hevy Workout Analytics MCP Server

An MCP (Model Context Protocol) server that provides Claude with SQL access to your Hevy workout data, plus rich context about your personal training conventions.

Features

  • 📊 SQL Access: Query your workout history with full SQL capabilities
  • 🏋️ Exercise Taxonomy: Customizable muscle group mappings for exercises
  • 📝 Personal Conventions: Track your specific rules (form resets, RPE usage, etc.)
  • 🔒 Read-Only: Safe SQL execution with no write permissions
  • 🎯 Smart Analysis: Let Claude write complex queries to answer nuanced questions

Architecture

Hevy CSV Export → SQLite Database → MCP Server → Claude
                                          ↓
                                    Taxonomy & Conventions

Installation

  1. Clone and install:
git clone <repo-url>
cd hevy-history-mcp
pip install -e .
  1. Import your Hevy data:
python scripts/import_csv.py /path/to/hevy_export.csv
  1. Configure Claude Desktop (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
  "mcpServers": {
    "hevy-history": {
      "command": "python",
      "args": ["-m", "hevy_mcp.server"],
      "env": {
        "HEVY_DB_PATH": "/path/to/hevy.db"
      }
    }
  }
}

Usage

Example Questions for Claude

  • "Which triceps exercises progressed best in the last 6 months?"
  • "Which exercises have plateaued?"
  • "What are my PRs for compound lifts?"
  • "Show volume trends for chest exercises"
  • "Account for form resets when analyzing bench press progress"

Available Tools

  1. execute_sql(query) - Run read-only SQL queries
  2. get_schema() - Get database schema with column descriptions
  3. get_exercise_taxonomy() - View/understand exercise-to-muscle mappings
  4. get_tracking_conventions() - Read your personal tracking rules

Configuration

Exercise Taxonomy (taxonomy.yaml)

Map exercises to muscle groups and specify compound movement credit:

exercises:
  "Bench Press (Barbell)":
    primary: [chest]
    secondary: [triceps, front_delts]
    category: compound
  "Tricep Pushdown (Cable)":
    primary: [triceps]
    category: isolation

Tracking Conventions (conventions.yaml)

Document your personal rules for analysis:

form_resets:
  - exercise: "Bench Press (Barbell)"
    date: "2024-03-15"
    reason: "Reset to focus on form, reduced weight by 20%"

rpe_usage:
  - "I track RPE consistently for main compound lifts"
  - "Isolation work RPE is less consistent"

tracking_notes:
  - "Superset_id groups exercises done back-to-back"
  - "I rest-pause sets are marked in exercise_notes"

Database Schema

The importer creates a workout_sets table with all Hevy CSV columns:

  • title - Workout name
  • start_time, end_time - Workout timestamps
  • exercise_title - Exercise name
  • set_index - Set number
  • weight_lbs, reps, distance_miles, duration_seconds - Performance metrics
  • rpe - Rate of Perceived Exertion
  • exercise_notes - Per-exercise notes
  • And more...

Development

Run tests:

pytest

Format code:

black .
ruff check .

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选