Hevy Workout Analytics MCP Server
Provides Claude with SQL access to Hevy workout history and personal training conventions stored in a SQLite database. It enables detailed analysis of exercise progress, volume trends, and muscle group mappings through natural language queries.
README
Hevy Workout Analytics MCP Server
An MCP (Model Context Protocol) server that provides Claude with SQL access to your Hevy workout data, plus rich context about your personal training conventions.
Features
- 📊 SQL Access: Query your workout history with full SQL capabilities
- 🏋️ Exercise Taxonomy: Customizable muscle group mappings for exercises
- 📝 Personal Conventions: Track your specific rules (form resets, RPE usage, etc.)
- 🔒 Read-Only: Safe SQL execution with no write permissions
- 🎯 Smart Analysis: Let Claude write complex queries to answer nuanced questions
Architecture
Hevy CSV Export → SQLite Database → MCP Server → Claude
↓
Taxonomy & Conventions
Installation
- Clone and install:
git clone <repo-url>
cd hevy-history-mcp
pip install -e .
- Import your Hevy data:
python scripts/import_csv.py /path/to/hevy_export.csv
- Configure Claude Desktop (
~/Library/Application Support/Claude/claude_desktop_config.jsonon macOS):
{
"mcpServers": {
"hevy-history": {
"command": "python",
"args": ["-m", "hevy_mcp.server"],
"env": {
"HEVY_DB_PATH": "/path/to/hevy.db"
}
}
}
}
Usage
Example Questions for Claude
- "Which triceps exercises progressed best in the last 6 months?"
- "Which exercises have plateaued?"
- "What are my PRs for compound lifts?"
- "Show volume trends for chest exercises"
- "Account for form resets when analyzing bench press progress"
Available Tools
- execute_sql(query) - Run read-only SQL queries
- get_schema() - Get database schema with column descriptions
- get_exercise_taxonomy() - View/understand exercise-to-muscle mappings
- get_tracking_conventions() - Read your personal tracking rules
Configuration
Exercise Taxonomy (taxonomy.yaml)
Map exercises to muscle groups and specify compound movement credit:
exercises:
"Bench Press (Barbell)":
primary: [chest]
secondary: [triceps, front_delts]
category: compound
"Tricep Pushdown (Cable)":
primary: [triceps]
category: isolation
Tracking Conventions (conventions.yaml)
Document your personal rules for analysis:
form_resets:
- exercise: "Bench Press (Barbell)"
date: "2024-03-15"
reason: "Reset to focus on form, reduced weight by 20%"
rpe_usage:
- "I track RPE consistently for main compound lifts"
- "Isolation work RPE is less consistent"
tracking_notes:
- "Superset_id groups exercises done back-to-back"
- "I rest-pause sets are marked in exercise_notes"
Database Schema
The importer creates a workout_sets table with all Hevy CSV columns:
title- Workout namestart_time,end_time- Workout timestampsexercise_title- Exercise nameset_index- Set numberweight_lbs,reps,distance_miles,duration_seconds- Performance metricsrpe- Rate of Perceived Exertionexercise_notes- Per-exercise notes- And more...
Development
Run tests:
pytest
Format code:
black .
ruff check .
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。