Hippocampus Memory MCP Server
Provides persistent, semantic memory storage for LLMs across sessions using vector embeddings and FAISS search. Features bio-inspired memory consolidation, intelligent forgetting, and semantic retrieval without API costs.
README
<div align="center">
🧠 Hippocampus Memory MCP Server
Persistent, Semantic Memory for Large Language Models
Features • Installation • Quick Start • Documentation • Architecture
</div>
📖 Overview
A Python-based Model Context Protocol (MCP) server that gives LLMs persistent, hippocampus-inspired memory across sessions. Store, retrieve, consolidate, and forget memories using semantic similarity search powered by vector embeddings.
Why Hippocampus? Just like the human brain's hippocampus consolidates short-term memories into long-term storage, this server intelligently manages LLM memory through biological patterns:
- 🔄 Consolidation - Merge similar memories to reduce redundancy
- 🧹 Forgetting - Remove outdated information based on age/importance
- 🔍 Semantic Retrieval - Find relevant memories through meaning, not keywords
✨ Features
| Feature | Description |
|---|---|
| 🗄️ Vector Storage | FAISS-powered semantic similarity search |
| 🎯 MCP Compliant | Full MCP 1.2.0 spec compliance via FastMCP |
| 🧬 Bio-Inspired | Hippocampus-style consolidation and forgetting |
| 🔒 Security | Input validation, rate limiting, injection prevention |
| 🔎 Semantic Search | Sentence transformer embeddings (CPU-optimized) |
| ♾️ Unlimited Storage | No memory count limits, only per-item size limits |
| 🆓 100% Free | Local embedding model - no API costs |
🚀 Quick Start
5 Core MCP Tools
memory_read # 🔍 Retrieve memories by semantic similarity
memory_write # ✍️ Store new memories with tags & metadata
memory_consolidate # 🔄 Merge similar memories
memory_forget # 🧹 Remove memories by age/importance/tags
memory_stats # 📊 Get system statistics
📦 Installation
Quick Install (Recommended)
pip install hippocampus-memory-mcp
Prerequisites: Python 3.9+ • ~200MB disk space (for embedding model)
Claude Desktop Integration
Add to your Claude Desktop config (claude_desktop_config.json):
{
"mcpServers": {
"memory": {
"command": "python",
"args": ["-m", "memory_mcp_server.server"]
}
}
}
🎉 That's it! Claude will now have persistent memory across conversations.
Install from Source (Alternative)
# Clone the repository
git clone https://github.com/jameslovespancakes/Memory-MCP.git
cd Memory-MCP
# Install dependencies
pip install -r requirements.txt
# Run the server
python -m memory_mcp_server.server
📚 Documentation
Memory Operations via MCP
Once connected to Claude, use natural language:
"Remember that I prefer Python for backend development"
→ Claude calls memory_write()
"What do you know about my programming preferences?"
→ Claude calls memory_read()
"Consolidate similar memories to clean up storage"
→ Claude calls memory_consolidate()
Direct API Usage
✍️ Writing Memories
from memory_mcp_server.storage import MemoryStorage
from memory_mcp_server.tools import MemoryTools
storage = MemoryStorage(storage_path="my_memory")
await storage._ensure_initialized()
tools = MemoryTools(storage)
# Store with tags and importance
await tools.memory_write(
text="User prefers dark mode UI",
tags=["preference", "ui"],
importance_score=3.0,
metadata={"category": "settings"}
)
🔍 Reading Memories
# Semantic search
result = await tools.memory_read(
query_text="What are my UI preferences?",
top_k=5,
min_similarity=0.3
)
# Filter by tags and date
result = await tools.memory_read(
query_text="Python learning",
tags=["learning", "python"],
date_range_start="2024-01-01"
)
🔄 Consolidating Memories
# Merge similar memories (threshold: 0.85)
result = await tools.memory_consolidate(similarity_threshold=0.85)
print(f"Merged {result['consolidated_groups']} groups")
🧹 Forgetting Memories
# Remove by age
await tools.memory_forget(max_age_days=30)
# Remove by importance
await tools.memory_forget(min_importance_score=2.0)
# Remove by tags
await tools.memory_forget(tags_to_forget=["temporary"])
Testing
Run the included test suite:
python test_memory.py
This tests all 5 operations with sample data.
🏗️ Architecture
┌─────────────────────────────────────────────────────┐
│ MCP Client (Claude Desktop, etc.) │
└───────────────────┬─────────────────────────────────┘
│ JSON-RPC over stdio
┌───────────────────▼─────────────────────────────────┐
│ FastMCP Server (server.py) │
│ ├─ memory_read │
│ ├─ memory_write │
│ ├─ memory_consolidate │
│ ├─ memory_forget │
│ └─ memory_stats │
└───────────────────┬─────────────────────────────────┘
│
┌───────────────────▼─────────────────────────────────┐
│ Memory Tools (tools.py) │
│ ├─ Input validation & sanitization │
│ └─ Rate limiting (100 req/min) │
└───────────────────┬─────────────────────────────────┘
│
┌───────────────────▼─────────────────────────────────┐
│ Storage Layer (storage.py) │
│ ├─ Sentence Transformers (all-MiniLM-L6-v2) │
│ ├─ FAISS Vector Index (cosine similarity) │
│ └─ JSON persistence (memories.json) │
└─────────────────────────────────────────────────────┘
🔄 Memory Lifecycle
| Step | Process | Technology |
|---|---|---|
| 📝 Write | Text → 384-dim vector embedding | Sentence Transformers (CPU) |
| 💾 Store | Normalized vector → FAISS index | FAISS IndexFlatIP |
| 🔍 Search | Query → embedding → top-k similar | Cosine similarity |
| 🔄 Consolidate | Group similar (>0.85) → merge | Vector clustering |
| 🧹 Forget | Filter by age/importance/tags → delete | Metadata filtering |
🔒 Security
| Protection | Implementation |
|---|---|
| 🛡️ Injection Prevention | Regex filtering of script tags, eval(), path traversal |
| ⏱️ Rate Limiting | 100 requests per 60-second window per client |
| 📏 Size Limits | 50KB text, 5KB metadata, 20 tags per memory |
| ✅ Input Validation | Pydantic models + custom sanitization |
| 🔐 Safe Logging | stderr only (prevents JSON-RPC corruption) |
⚙️ Configuration
Environment Variables
MEMORY_STORAGE_PATH="memory_data" # Storage directory
EMBEDDING_MODEL="all-MiniLM-L6-v2" # Model name
RATE_LIMIT_REQUESTS=100 # Max requests
RATE_LIMIT_WINDOW=60 # Time window (seconds)
Storage Limits
- ✅ Unlimited total memories (no count limit)
- ⚠️ Per-memory limits: 50KB text, 5KB metadata, 20 tags
🐛 Troubleshooting
<details> <summary><b>Model won't download</b></summary>
First run downloads all-MiniLM-L6-v2 (~90MB). Ensure internet connection and ~/.cache/ write permissions.
</details>
<details> <summary><b>PyTorch compatibility errors</b></summary>
pip uninstall torch transformers sentence-transformers -y
pip install torch==2.1.0 transformers==4.35.2 sentence-transformers==2.2.2
</details>
<details> <summary><b>Memory errors on large operations</b></summary>
The model runs on CPU. Ensure 2GB+ free RAM. Reduce top_k in read operations if needed.
</details>
📝 License
MIT License - feel free to use in your projects!
🤝 Contributing
PRs welcome! Please:
- Follow MCP security guidelines
- Add tests for new features
- Update documentation
🔗 Resources
<div align="center">
Built with 🧠 for persistent LLM memory
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。