Hive Mind MCP Server

Hive Mind MCP Server

Automatically generates and maintains living documentation for codebases by creating hierarchical hivemind.md files and flowchart diagrams at every directory level, enabling AI navigation and real-time or retroactive documentation of code structure, requirements, and dependencies.

Category
访问服务器

README

Hive Mind MCP Server

Intelligent documentation system for codebases that creates living documentation as you build.

Hive Mind is an MCP (Model Context Protocol) server that automatically generates hivemind.md and flowchart.mmd at every directory level, creating a navigable spider-web of documentation that:

  • Works in real-time as code is built
  • Can retroactively document existing codebases
  • Preserves user requirements and architectural decisions
  • Enables AI navigation via anchor points
  • Works with any context window size (8k to 200k tokens)

Installation

Quick Start (Recommended)

You can run the server directly using uvx (no installation required):

{
  "mcpServers": {
    "hive-mind": {
      "command": "uvx",
      "args": ["mcp-hivemind-server"]
    }
  }
}

Install via pip

pip install mcp-hivemind-server

Install from Source (Development)

# Clone the repository
git clone https://github.com/Jahanzaib-Kaleem/hive-mind-mcp.git
cd hive-mind-mcp

# Create virtual environment
python -m venv venv
venv\Scripts\activate  # Windows
# source venv/bin/activate  # macOS/Linux

# Install dependencies
pip install -r requirements.txt

Requirements

  • Python 3.11 or higher
  • Dependencies: mcp, tree-sitter, tree-sitter-languages, aiofiles, pyyaml

Configuration

For Antigravity / Claude Desktop

Edit your MCP configuration file:

Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/claude/claude_desktop_config.json

Option 1: Using uvx (Easiest)

{
  "mcpServers": {
    "hive-mind": {
      "command": "uvx",
      "args": ["mcp-hivemind-server"]
    }
  }
}

Option 2: Using pip installation

{
  "mcpServers": {
    "hive-mind": {
      "command": "hive-mind",
      "args": []
    }
  }
}

Option 3: Using Source Code

{
  "mcpServers": {
    "hive-mind": {
      "command": "python",
      "args": ["C:/path/to/hive-mind-mcp/server.py"]
    }
  }
}

For Cursor

  1. Open Cursor Settings
  2. Navigate to Features → MCP Servers
  3. Add new server:
    • Name: hive-mind
    • Type: stdio
    • Command: uvx
    • Args: mcp-hivemind-server

Usage

Real-time Documentation

While coding, ask your AI assistant:

"Document this code as we build it"

The AI will call document_current_work to capture:

  • Code structure (functions, imports, exports)
  • User requirements and constraints
  • Warnings and gotchas
  • Next steps and TODOs
  • How the code works

Retroactive Documentation

For existing codebases, ask:

"Document my entire codebase with hive-mind"

The AI will call build_hive to:

  • Walk the entire directory tree
  • Parse all code files
  • Generate documentation at each level
  • Create connection graphs

Guided Hive Build (Recommended)

For AI-enriched documentation where YOU provide the context:

"Start a guided hive build on my codebase"

How it works:

  1. MCP discovers all directories
  2. For each directory, MCP shows you the structure (files, functions)
  3. YOU read the actual code and understand what it does
  4. YOU call continue_hive_build with your explanation
  5. MCP writes hivemind.md with both structure AND your context
  6. Repeat until all directories are documented

This creates documentation with intelligent context from the AI (you!), not just dry parsing.

Navigation

Ask AI to navigate your codebase:

"Show me the auth system context"
"Find the validateSession function"
"Trace what uses the database module"

Tools

Core Tools

Tool Description
document_current_work Real-time documentation while building code
build_hive Auto-document entire codebase (structure only)
navigate_to Load context from anchor point
find_function Search for function across codebase
trace_usage Find dependencies and dependents
update_hivemind Update docs when code changes

Guided Build Tools

Tool Description
start_hive_build Start guided build, returns first directory for YOU to document
continue_hive_build Submit YOUR context, get next directory
get_hive_status Check progress of guided build

Generated Files

hivemind.md

Each directory gets a hivemind.md file containing:

AI Context Sections (above the line):

  • What This Does - Purpose and role
  • User Requirements - Constraints and preferences
  • Important Notes - Warnings and gotchas
  • Next Steps - TODOs and planned work
  • How It Works - Key patterns and logic

Dry Logic Sections (below the line):

  • Files at This Level
  • Functions Defined
  • Dependencies
  • Exports
  • Connections
  • Navigation
  • Metrics

flowchart.mmd

Mermaid diagram showing:

  • Current directory (purple center node)
  • Parent directory (gray)
  • Child directories (green)
  • Upstream dependencies (orange)
  • Downstream dependents (cyan)

Anchor Points

Navigate using anchor points in format: anchor://path/to/directory

Example:

anchor://project/src/components/auth

Testing

# Run all tests
python -m pytest tests/ -v

# Run specific test file
python -m pytest tests/test_parser.py -v

# Run with coverage
python -m pytest tests/ --cov=. --cov-report=html

Project Structure

hive-mind-mcp/
├── server.py              # Main MCP server entry point
├── parser.py              # Code structure extraction (tree-sitter)
├── generator.py           # Markdown/Mermaid generation
├── enrichment.py          # AI context integration
├── navigator.py           # Anchor point navigation
├── config.py              # Configuration constants
├── utils.py               # Helper functions
├── requirements.txt       # Python dependencies
├── README.md              # This file
├── .gitignore
└── tests/
    ├── test_parser.py
    ├── test_generator.py
    └── test_integration.py

Supported Languages

  • TypeScript (.ts, .tsx)
  • JavaScript (.js, .jsx, .mjs, .cjs)
  • Python (.py)

Optional AI Enrichment

Set ANTHROPIC_API_KEY environment variable to enable automatic AI-generated context:

export ANTHROPIC_API_KEY=your_key_here

Then use build_hive with enrich_with_ai: true.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选