Hive Mind MCP Server
Automatically generates and maintains living documentation for codebases by creating hierarchical hivemind.md files and flowchart diagrams at every directory level, enabling AI navigation and real-time or retroactive documentation of code structure, requirements, and dependencies.
README
Hive Mind MCP Server
Intelligent documentation system for codebases that creates living documentation as you build.
Hive Mind is an MCP (Model Context Protocol) server that automatically generates hivemind.md and flowchart.mmd at every directory level, creating a navigable spider-web of documentation that:
- Works in real-time as code is built
- Can retroactively document existing codebases
- Preserves user requirements and architectural decisions
- Enables AI navigation via anchor points
- Works with any context window size (8k to 200k tokens)
Installation
Quick Start (Recommended)
You can run the server directly using uvx (no installation required):
{
"mcpServers": {
"hive-mind": {
"command": "uvx",
"args": ["mcp-hivemind-server"]
}
}
}
Install via pip
pip install mcp-hivemind-server
Install from Source (Development)
# Clone the repository
git clone https://github.com/Jahanzaib-Kaleem/hive-mind-mcp.git
cd hive-mind-mcp
# Create virtual environment
python -m venv venv
venv\Scripts\activate # Windows
# source venv/bin/activate # macOS/Linux
# Install dependencies
pip install -r requirements.txt
Requirements
- Python 3.11 or higher
- Dependencies:
mcp,tree-sitter,tree-sitter-languages,aiofiles,pyyaml
Configuration
For Antigravity / Claude Desktop
Edit your MCP configuration file:
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/claude/claude_desktop_config.json
Option 1: Using uvx (Easiest)
{
"mcpServers": {
"hive-mind": {
"command": "uvx",
"args": ["mcp-hivemind-server"]
}
}
}
Option 2: Using pip installation
{
"mcpServers": {
"hive-mind": {
"command": "hive-mind",
"args": []
}
}
}
Option 3: Using Source Code
{
"mcpServers": {
"hive-mind": {
"command": "python",
"args": ["C:/path/to/hive-mind-mcp/server.py"]
}
}
}
For Cursor
- Open Cursor Settings
- Navigate to Features → MCP Servers
- Add new server:
- Name:
hive-mind - Type:
stdio - Command:
uvx - Args:
mcp-hivemind-server
- Name:
Usage
Real-time Documentation
While coding, ask your AI assistant:
"Document this code as we build it"
The AI will call document_current_work to capture:
- Code structure (functions, imports, exports)
- User requirements and constraints
- Warnings and gotchas
- Next steps and TODOs
- How the code works
Retroactive Documentation
For existing codebases, ask:
"Document my entire codebase with hive-mind"
The AI will call build_hive to:
- Walk the entire directory tree
- Parse all code files
- Generate documentation at each level
- Create connection graphs
Guided Hive Build (Recommended)
For AI-enriched documentation where YOU provide the context:
"Start a guided hive build on my codebase"
How it works:
- MCP discovers all directories
- For each directory, MCP shows you the structure (files, functions)
- YOU read the actual code and understand what it does
- YOU call
continue_hive_buildwith your explanation - MCP writes
hivemind.mdwith both structure AND your context - Repeat until all directories are documented
This creates documentation with intelligent context from the AI (you!), not just dry parsing.
Navigation
Ask AI to navigate your codebase:
"Show me the auth system context"
"Find the validateSession function"
"Trace what uses the database module"
Tools
Core Tools
| Tool | Description |
|---|---|
document_current_work |
Real-time documentation while building code |
build_hive |
Auto-document entire codebase (structure only) |
navigate_to |
Load context from anchor point |
find_function |
Search for function across codebase |
trace_usage |
Find dependencies and dependents |
update_hivemind |
Update docs when code changes |
Guided Build Tools
| Tool | Description |
|---|---|
start_hive_build |
Start guided build, returns first directory for YOU to document |
continue_hive_build |
Submit YOUR context, get next directory |
get_hive_status |
Check progress of guided build |
Generated Files
hivemind.md
Each directory gets a hivemind.md file containing:
AI Context Sections (above the line):
- What This Does - Purpose and role
- User Requirements - Constraints and preferences
- Important Notes - Warnings and gotchas
- Next Steps - TODOs and planned work
- How It Works - Key patterns and logic
Dry Logic Sections (below the line):
- Files at This Level
- Functions Defined
- Dependencies
- Exports
- Connections
- Navigation
- Metrics
flowchart.mmd
Mermaid diagram showing:
- Current directory (purple center node)
- Parent directory (gray)
- Child directories (green)
- Upstream dependencies (orange)
- Downstream dependents (cyan)
Anchor Points
Navigate using anchor points in format: anchor://path/to/directory
Example:
anchor://project/src/components/auth
Testing
# Run all tests
python -m pytest tests/ -v
# Run specific test file
python -m pytest tests/test_parser.py -v
# Run with coverage
python -m pytest tests/ --cov=. --cov-report=html
Project Structure
hive-mind-mcp/
├── server.py # Main MCP server entry point
├── parser.py # Code structure extraction (tree-sitter)
├── generator.py # Markdown/Mermaid generation
├── enrichment.py # AI context integration
├── navigator.py # Anchor point navigation
├── config.py # Configuration constants
├── utils.py # Helper functions
├── requirements.txt # Python dependencies
├── README.md # This file
├── .gitignore
└── tests/
├── test_parser.py
├── test_generator.py
└── test_integration.py
Supported Languages
- TypeScript (
.ts,.tsx) - JavaScript (
.js,.jsx,.mjs,.cjs) - Python (
.py)
Optional AI Enrichment
Set ANTHROPIC_API_KEY environment variable to enable automatic AI-generated context:
export ANTHROPIC_API_KEY=your_key_here
Then use build_hive with enrich_with_ai: true.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。