Honeybadger MCP Server

Honeybadger MCP Server

Enables AI agents to interact with the Honeybadger error monitoring service to list, filter, and analyze fault data. It provides tools for fetching error lists and retrieving detailed fault information from Honeybadger projects.

Category
访问服务器

README

Honeybadger MCP Server

A Model Context Protocol (MCP) server implementation for interacting with the Honeybadger API. This server allows AI agents to fetch and analyze error data from your Honeybadger projects.

Overview

This MCP server provides a bridge between AI agents and the Honeybadger error monitoring service. It follows the best practices laid out by Anthropic for building MCP servers, allowing seamless integration with any MCP-compatible client.

Features

The server provides two essential tools for interacting with Honeybadger:

  1. list_faults: List and filter faults from your Honeybadger project

    • Search by text query
    • Filter by creation or occurrence timestamps
    • Sort by frequency or recency
    • Paginate results
  2. get_fault_details: Get detailed information about specific faults

    • Filter notices by creation time
    • Paginate through notices
    • Results ordered by creation time descending

Prerequisites

  • Python 3.10+
  • Honeybadger API key and Project ID
  • Docker if running the MCP server as a container (recommended)

Installation

Using uv

  1. Install uv if you don't have it:

    pip install uv
    
  2. Clone this repository:

    git clone https://github.com/bobtista/honeybadger-mcp.git
    cd honeybadger-mcp
    
  3. Install dependencies:

    uv pip install -e .
    
  4. Install development dependencies (optional):

    uv pip install -e ".[dev]"
    
  5. Create your environment file:

    cp .env.example .env
    # Edit .env with your configuration
    

Using Docker (Recommended)

  1. Build the Docker image:

    docker build -t honeybadger/mcp --build-arg PORT=8050 .
    
  2. Create a .env file and configure your environment variables

Configuration

You can configure the server using either environment variables or command-line arguments:

Option Env Variable CLI Argument Default Description
API Key HONEYBADGER_API_KEY --api-key Required Your Honeybadger API key
Project ID HONEYBADGER_PROJECT_ID --project-id Required Your Honeybadger project ID
Transport TRANSPORT --transport sse Transport protocol (sse or stdio)
Host HOST --host 127.0.0.1 Host to bind to when using SSE transport
Port PORT --port 8050 Port to listen on when using SSE transport
Log Level LOG_LEVEL --log-level INFO Logging level (INFO, DEBUG, etc.)

Running the Server

Running with uv (Development)

SSE Transport (Default)

# Using environment variables:
HONEYBADGER_API_KEY=your-key HONEYBADGER_PROJECT_ID=your-project uv run src/honeybadger_mcp_server/server.py

# Using CLI arguments:
uv run src/honeybadger_mcp_server/server.py --api-key your-key --project-id your-project

Using Stdio

uv run src/honeybadger_mcp_server/server.py --transport stdio --api-key your-key --project-id your-project

Running Installed Package

SSE Transport (Default)

# Using environment variables:
HONEYBADGER_API_KEY=your-key HONEYBADGER_PROJECT_ID=your-project honeybadger-mcp-server

# Using CLI arguments:
honeybadger-mcp-server --api-key your-key --project-id your-project

Using Stdio

honeybadger-mcp-server --transport stdio --api-key your-key --project-id your-project

Using Docker

Run with SSE

docker run --env-file .env -p 8050:8050 honeybadger/mcp

Using Stdio

With stdio, the MCP client itself can spin up the MCP server container, so nothing to run at this point.

Integration with MCP Clients

SSE Configuration

Once you have the server running with SSE transport, you can connect to it using this configuration:

{
  "mcpServers": {
    "honeybadger": {
      "transport": "sse",
      "url": "http://localhost:8050/sse"
    }
  }
}

Claude Desktop Configuration

Using SSE Transport (Recommended)

First, start the server:

honeybadger-mcp-server --api-key your-key --project-id your-project

Then add to your Claude Desktop config:

{
  "mcpServers": {
    "honeybadger": {
      "transport": "sse",
      "url": "http://localhost:8050/sse"
    }
  }
}

Using Stdio Transport

Add to your Claude Desktop config:

{
  "mcpServers": {
    "honeybadger": {
      "command": "uv",
      "args": [
        "run",
        "--project",
        "/path/to/honeybadger-mcp",
        "src/honeybadger_mcp_server/server.py",
        "--transport",
        "stdio",
        "--api-key",
        "YOUR-API-KEY",
        "--project-id",
        "YOUR-PROJECT-ID"
      ]
    }
  }
}

Docker Configuration

{
  "mcpServers": {
    "honeybadger": {
      "command": "docker",
      "args": [
        "run",
        "--rm",
        "-i",
        "honeybadger/mcp",
        "--transport",
        "stdio",
        "--api-key",
        "YOUR-API-KEY",
        "--project-id",
        "YOUR-PROJECT-ID"
      ]
    }
  }
}

Tool Usage Examples

List Faults

result = await client.call_tool("list_faults", {
    "q": "RuntimeError",           # Optional search term
    "created_after": 1710806400,  # Unix timestamp (2024-03-19T00:00:00Z)
    "occurred_after": 1710806400, # Filter by occurrence time
    "limit": 10,                  # Max 25 results
    "order": "recent"             # 'recent' or 'frequent'
})

Get Fault Details

result = await client.call_tool("get_fault_details", {
    "fault_id": "abc123",
    "created_after": 1710806400,  # Unix timestamp
    "created_before": 1710892800, # Optional end time
    "limit": 5                    # Number of notices (max 25)
})

Development

Running Tests

# Install dev dependencies
uv pip install -e ".[dev]"

# Run tests
pytest

Code Quality

# Run type checker
pyright

# Run linter
ruff check .

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选