Honeybadger MCP Server
Enables AI agents to interact with the Honeybadger error monitoring service to list, filter, and analyze fault data. It provides tools for fetching error lists and retrieving detailed fault information from Honeybadger projects.
README
Honeybadger MCP Server
A Model Context Protocol (MCP) server implementation for interacting with the Honeybadger API. This server allows AI agents to fetch and analyze error data from your Honeybadger projects.
Overview
This MCP server provides a bridge between AI agents and the Honeybadger error monitoring service. It follows the best practices laid out by Anthropic for building MCP servers, allowing seamless integration with any MCP-compatible client.
Features
The server provides two essential tools for interacting with Honeybadger:
-
list_faults: List and filter faults from your Honeybadger project- Search by text query
- Filter by creation or occurrence timestamps
- Sort by frequency or recency
- Paginate results
-
get_fault_details: Get detailed information about specific faults- Filter notices by creation time
- Paginate through notices
- Results ordered by creation time descending
Prerequisites
- Python 3.10+
- Honeybadger API key and Project ID
- Docker if running the MCP server as a container (recommended)
Installation
Using uv
-
Install uv if you don't have it:
pip install uv -
Clone this repository:
git clone https://github.com/bobtista/honeybadger-mcp.git cd honeybadger-mcp -
Install dependencies:
uv pip install -e . -
Install development dependencies (optional):
uv pip install -e ".[dev]" -
Create your environment file:
cp .env.example .env # Edit .env with your configuration
Using Docker (Recommended)
-
Build the Docker image:
docker build -t honeybadger/mcp --build-arg PORT=8050 . -
Create a
.envfile and configure your environment variables
Configuration
You can configure the server using either environment variables or command-line arguments:
| Option | Env Variable | CLI Argument | Default | Description |
|---|---|---|---|---|
| API Key | HONEYBADGER_API_KEY | --api-key | Required | Your Honeybadger API key |
| Project ID | HONEYBADGER_PROJECT_ID | --project-id | Required | Your Honeybadger project ID |
| Transport | TRANSPORT | --transport | sse | Transport protocol (sse or stdio) |
| Host | HOST | --host | 127.0.0.1 | Host to bind to when using SSE transport |
| Port | PORT | --port | 8050 | Port to listen on when using SSE transport |
| Log Level | LOG_LEVEL | --log-level | INFO | Logging level (INFO, DEBUG, etc.) |
Running the Server
Running with uv (Development)
SSE Transport (Default)
# Using environment variables:
HONEYBADGER_API_KEY=your-key HONEYBADGER_PROJECT_ID=your-project uv run src/honeybadger_mcp_server/server.py
# Using CLI arguments:
uv run src/honeybadger_mcp_server/server.py --api-key your-key --project-id your-project
Using Stdio
uv run src/honeybadger_mcp_server/server.py --transport stdio --api-key your-key --project-id your-project
Running Installed Package
SSE Transport (Default)
# Using environment variables:
HONEYBADGER_API_KEY=your-key HONEYBADGER_PROJECT_ID=your-project honeybadger-mcp-server
# Using CLI arguments:
honeybadger-mcp-server --api-key your-key --project-id your-project
Using Stdio
honeybadger-mcp-server --transport stdio --api-key your-key --project-id your-project
Using Docker
Run with SSE
docker run --env-file .env -p 8050:8050 honeybadger/mcp
Using Stdio
With stdio, the MCP client itself can spin up the MCP server container, so nothing to run at this point.
Integration with MCP Clients
SSE Configuration
Once you have the server running with SSE transport, you can connect to it using this configuration:
{
"mcpServers": {
"honeybadger": {
"transport": "sse",
"url": "http://localhost:8050/sse"
}
}
}
Claude Desktop Configuration
Using SSE Transport (Recommended)
First, start the server:
honeybadger-mcp-server --api-key your-key --project-id your-project
Then add to your Claude Desktop config:
{
"mcpServers": {
"honeybadger": {
"transport": "sse",
"url": "http://localhost:8050/sse"
}
}
}
Using Stdio Transport
Add to your Claude Desktop config:
{
"mcpServers": {
"honeybadger": {
"command": "uv",
"args": [
"run",
"--project",
"/path/to/honeybadger-mcp",
"src/honeybadger_mcp_server/server.py",
"--transport",
"stdio",
"--api-key",
"YOUR-API-KEY",
"--project-id",
"YOUR-PROJECT-ID"
]
}
}
}
Docker Configuration
{
"mcpServers": {
"honeybadger": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"honeybadger/mcp",
"--transport",
"stdio",
"--api-key",
"YOUR-API-KEY",
"--project-id",
"YOUR-PROJECT-ID"
]
}
}
}
Tool Usage Examples
List Faults
result = await client.call_tool("list_faults", {
"q": "RuntimeError", # Optional search term
"created_after": 1710806400, # Unix timestamp (2024-03-19T00:00:00Z)
"occurred_after": 1710806400, # Filter by occurrence time
"limit": 10, # Max 25 results
"order": "recent" # 'recent' or 'frequent'
})
Get Fault Details
result = await client.call_tool("get_fault_details", {
"fault_id": "abc123",
"created_after": 1710806400, # Unix timestamp
"created_before": 1710892800, # Optional end time
"limit": 5 # Number of notices (max 25)
})
Development
Running Tests
# Install dev dependencies
uv pip install -e ".[dev]"
# Run tests
pytest
Code Quality
# Run type checker
pyright
# Run linter
ruff check .
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。