Hugging Face Hub Semantic Search MCP
An unofficial MCP server that provides semantic search capabilities for Hugging Face models and datasets, enabling Claude and other MCP-compatible clients to search, discover, and explore the Hugging Face ecosystem using natural language queries.
README
Hugging Face Hub Semantic Search MCP Server
⚠️ Note: This is an unofficial MCP server inspired by Hugging Face's official MCP server. It may be deprecated at any time if official functionality supersedes it. For the official server, see hf.co/mcp.
An MCP (Model Context Protocol) server that provides semantic search capabilities for Hugging Face models and datasets. This server enables Claude and other MCP-compatible clients to search, discover, and explore the Hugging Face ecosystem using natural language queries.
Features
- Semantic Search: AI-powered similarity search (not just keyword matching)
- Dataset Search: Find datasets based on natural language descriptions
- Model Search: Find models with optional parameter count filtering
- Similarity Search: Find similar models/datasets to a given one
- Trending Content: Get currently trending models and datasets
- Detailed Metadata: Access comprehensive technical information via HuggingFace API
- Model/Dataset Cards: Download README cards for detailed information
Tools Available
Dataset Tools
search_datasets: Search datasets using natural language queriesfind_similar_datasets: Find datasets similar to a specified oneget_trending_datasets: Get currently trending datasetsget_dataset_info: Get detailed metadata for a specific datasetdownload_dataset_card: Download README card for a dataset
Model Tools
search_models: Search models using natural language queries with parameter filteringfind_similar_models: Find models similar to a specified oneget_trending_models: Get currently trending models with parameter filteringget_model_info: Get detailed metadata for a specific modelget_model_safetensors_metadata: Get model architecture details and parameter count from safetensorsdownload_model_card: Download README card for a model
Installation
Prerequisites
- UV - Fast Python package installer
- Claude Desktop or another MCP-compatible client
Quick Start
No installation needed! UV will automatically fetch and run the server.
Configuration
Claude Desktop Setup
Add the following to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"huggingface-hub-search": {
"command": "uvx",
"args": [
"git+https://github.com/davanstrien/hub-semantic-search-mcp.git"
],
"env": {
"HF_SEARCH_API_URL": "https://davanstrien-huggingface-datasets-search-v2.hf.space"
}
}
}
}
Alternative: Local Development Setup
If you want to contribute or modify the code:
# Clone the repository
git clone https://github.com/davanstrien/hub-semantic-search-mcp.git
cd hub-semantic-search-mcp
# Install dependencies with UV
uv sync
Then configure Claude Desktop to use the local version:
{
"mcpServers": {
"huggingface-hub-search": {
"command": "uv",
"args": [
"--directory",
"/path/to/hub-semantic-search-mcp",
"run",
"python",
"app.py"
],
"env": {
"HF_SEARCH_API_URL": "https://davanstrien-huggingface-datasets-search-v2.hf.space"
}
}
}
}
Usage Examples
Once configured, you can use the tools in Claude Desktop:
Search for Datasets
"Find datasets about climate change and weather patterns"
Search for Models
"Find small language models under 1B parameters for text generation"
Find Similar Content
"Find datasets similar to 'squad' for question answering"
Get Trending Content
"Show me the top 10 trending AI models this week"
Get Detailed Metadata
"Get detailed information about the 'stanford-nlp/imdb' dataset" "Show me technical details and configuration for 'microsoft/DialoGPT-medium'" "What's the parameter count and architecture of 'microsoft/DialoGPT-medium'?"
Download Documentation
"Download the model card for 'microsoft/DialoGPT-medium'"
Environment Variables
HF_SEARCH_API_URL: Base URL for the search API (default: https://davanstrien-huggingface-datasets-search-v2.hf.space)
Search Backend
This MCP server connects to a semantic search API that indexes Hugging Face models and datasets with AI-generated summaries. The search uses embedding-based similarity rather than keyword matching, making it more effective for discovering relevant content based on intent and meaning.
Development
Running Locally
# Run the server directly
uv run python app.py
# Or activate the virtual environment
uv shell
python app.py
Testing with MCP Inspector
# Test the GitHub version
npx @modelcontextprotocol/inspector uvx git+https://github.com/davanstrien/hub-semantic-search-mcp.git
# Or test locally
npx @modelcontextprotocol/inspector uv run python app.py
Contributing
Contributions are welcome! Please feel free to submit issues and pull requests.
Development Setup
git clone https://github.com/davanstrien/hub-semantic-search-mcp.git
cd hub-semantic-search-mcp
uv sync --dev
License
MIT License - see LICENSE file for details.
Related Projects
- Model Context Protocol
- Hugging Face Hub
- Claude Desktop
- UV - Fast Python package installer
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。