HydraMCP

HydraMCP

An MCP server that enables users to query, compare, and synthesize responses from multiple local and cloud LLMs simultaneously using existing subscriptions. It provides tools for parallel model evaluation, consensus polling with an LLM-as-judge, and response synthesis across different model providers.

Category
访问服务器

README

<p align="center"> <img src="assets/HydraMCP.png" width="200" /> </p>

<h1 align="center">HydraMCP</h1> <p align="center">Connect agents to agents.</p>

An MCP server that lets Claude Code query any LLM through your existing subscriptions. No extra API keys, no per-token billing. Just your monthly subscriptions working together from one terminal.

What It Looks Like

Four models, four ecosystems, one prompt. This is real output from a live session:

> compare gpt-5-codex, gemini-3, claude-sonnet, and local qwen on this function review

## Model Comparison (4 models, 11637ms total)

| Model                      | Latency         | Tokens |
|----------------------------|-----------------|--------|
| gpt-5-codex                | 1630ms fastest  | 194    |
| gemini-3-pro-preview       | 11636ms         | 1235   |
| claude-sonnet-4-5-20250929 | 3010ms          | 202    |
| ollama/qwen2.5-coder:14b   | 8407ms          | 187    |

All four independently found the same async bug. Then each one caught something different the others missed. GPT-5 was fastest, Gemini was most thorough, Claude gave the fix direction, Qwen explained the why. Different training, different strengths, one comparison.

And this is consensus with a local judge:

> get consensus from gpt-5, gemini-3, and claude-sonnet. use local qwen as judge.

## Consensus: REACHED

Strategy: majority (needed 2/3)
Agreement: 3/3 models (100%)
Judge: ollama/qwen2.5-coder:14b (686ms)

Three cloud models polled, local model judging them. 686ms to evaluate agreement, no quota used.

Five Tools

  • list_models - See what's available across all your providers
  • ask_model - Query any model and get a response back
  • compare_models - Same prompt to 2-5 models in parallel, side by side with brief/detailed format
  • consensus - Poll 3-7 models, a judge model evaluates agreement, returns one answer with a confidence score
  • synthesize - Fan out to multiple models, then combine their best ideas into one answer that's better than any individual response

From inside Claude Code you just say things like:

  • "ask gpt-5 to review this function"
  • "compare gemini and claude on this approach"
  • "get consensus from 3 models on whether this is thread safe"
  • "synthesize responses from gpt-5, gemini, claude, and qwen on how to design this API"

It just works. No browser tabs, no copy pasting between apps.

How It Works

You in Claude Code
    |
    HydraMCP (MCP Server)
    |
    Provider Interface
    |-- CLIProxyAPI  -> cloud models (OpenAI, Google, Anthropic, etc.)
    |-- Ollama       -> local models (your hardware)

HydraMCP sits between Claude Code and your model providers. It routes requests to the right backend, runs comparisons in parallel, and formats results to keep your context window small.

The consensus tool uses an LLM-as-judge approach. Instead of naive keyword matching, it picks a model not in the poll and has it evaluate whether the responses actually agree. It understands that "start with a monolith" and "monolith because it's simpler" are the same answer.

The synthesize tool goes further. It collects responses from multiple models, then a synthesizer model reads all of them and builds one combined answer. Best structure from one, best insights from another, best examples from a third. The result is better than any single model could produce alone.

Setup

You need Node.js 18+, Claude Code, and at least one backend. The whole process takes about 5 minutes.

Step 1: Set Up a Backend

You need at least one of these. Both is ideal.

CLIProxyAPI (Cloud Models)

CLIProxyAPI turns your existing subscriptions (ChatGPT Plus, Claude Pro, Gemini, etc.) into a local API. You authenticate once per provider, and it handles the rest.

Get the binary:

Platform Install
Windows Download from releases (windows_amd64.zip)
macOS brew install cliproxyapi
Linux curl -fsSL https://raw.githubusercontent.com/brokechubb/cliproxyapi-installer/refs/heads/master/cliproxyapi-installer | bash

Create config.yaml next to the binary:

port: 8317
auth-dir: "~/.cli-proxy-api"
api-keys:
  - "sk-my-local-key"

The API key is a local passphrase you make up. It sits between HydraMCP and CLIProxyAPI on your machine. Not a provider key.

Authenticate your subscriptions:

Each subscription is one login command. A browser opens, you sign in with your existing account, done.

# Pick whichever subscriptions you have:
./cli-proxy-api --codex-login          # ChatGPT Plus / Codex
./cli-proxy-api --claude-login         # Claude Pro
./cli-proxy-api --login                # Google Gemini
./cli-proxy-api --antigravity-login    # Antigravity (free, gives Gemini 3)

You can authenticate as many as you want. Each one adds models to your pool. Run the same command again with a different account to add multiple credentials per provider.

Start it:

./cli-proxy-api

Runs on localhost:8317. Leave it running.

Ollama (Local Models)

Install Ollama, then pull a model:

ollama pull qwen2.5-coder:14b

Runs on localhost:11434 by default. Good for fast operations like judging consensus without using cloud quota.

Step 2: Install HydraMCP

git clone https://github.com/Pickle-Pixel/HydraMCP.git
cd HydraMCP
npm install
npm run build

Step 3: Configure

cp .env.example .env

Edit .env to match your backends:

# CLIProxyAPI (skip if not using)
CLIPROXYAPI_URL=http://localhost:8317
CLIPROXYAPI_KEY=sk-my-local-key

# Ollama (skip if not using)
OLLAMA_URL=http://localhost:11434

The CLIPROXYAPI_KEY should match the key you put in config.yaml.

Step 4: Register with Claude Code

claude mcp add hydramcp -s user -- node /path/to/HydraMCP/dist/index.js

Restart Claude Code. Type "list models" and you should see everything you authenticated.

Model Routing

You can target specific backends with prefixes:

  • cliproxy/gpt-5 - explicitly use CLIProxyAPI
  • ollama/qwen2.5-coder:14b - explicitly use Ollama
  • gpt-5 - auto-detect (tries each provider until one handles it)

Credits

I built the MCP tool layer, routing logic, and multi-model orchestration on top of these. Credit where it's due.

Contributing

Want to add a provider? The interface is simple. Check src/providers/provider.ts for the contract and src/providers/ollama.ts for a working example. Implement healthCheck(), listModels(), and query(), register it in src/index.ts, and you're done.

Providers we'd love to see:

  • LM Studio
  • OpenRouter
  • Direct API keys (OpenAI, Anthropic, Google)
  • Anything else that speaks HTTP

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选