IBKR MCP Server
Provides AI models with secure access to Interactive Brokers trading data and functionality, enabling account management, market data retrieval, and trading operations through natural language interactions.
README
IBKR MCP Server
A Model Context Protocol (MCP) server that provides AI models with secure access to Interactive Brokers (IBKR) trading data and functionality through the TWS API.
⚠️⚠️⚠️ Disclaimer ⚠️⚠️⚠️
This software is for educational and development purposes. Use at your own risk. The authors are not responsible for any financial losses incurred through the use of this software. Always test with paper trading before using with real money.
🚀 Features
- Account Management: Get positions, portfolio details, and account summaries
- Market Data: Retrieve historical price data and real-time market information
- Trading Operations: Place orders, manage positions, and track executions
- MCP Integration: Seamless integration with AI models supporting MCP protocol
- Safety Features: Read-only mode, configurable trading restrictions, and comprehensive validation
- High Availability: Automatic reconnection, heartbeat monitoring, and graceful error handling
📋 Prerequisites
- Python 3.10+
- Interactive Brokers TWS or IB Gateway
- Active IBKR account (paper trading recommended for testing)
🛠️ Installation
-
Clone the repository:
git clone https://github.com/happy-shine/ibkr_mcp.git cd ibkr_mcp -
Install dependencies:
pip install -r requirements.txt -
Configure TWS/IB Gateway:
- Enable API connections in TWS/Gateway settings
- Set socket port (default: 7497 for paper trading, 7496 for live)
- Configure trusted IP addresses if needed
-
Configure the server:
cp config/config.yaml.example config/config.yaml # Edit config/config.yaml with your settings
🚀 Usage
Starting the Server
# Using the run script
python run.py
The server will:
- Connect to TWS/IB Gateway
- Start the MCP server on the configured port
- Begin heartbeat monitoring
- Log all activities
Available MCP Tools
Account Tools
get_positions()- Get current account positionsget_account_summary()- Get account balance and metricsget_portfolio()- Get detailed portfolio information
Market Data Tools
get_historical_data(symbol, duration, bar_size)- Get historical price dataget_market_data(symbol)- Get real-time market dataget_contract_details(symbol)- Get contract specificationsget_option_chain- Get Option data
Trading Tools
place_order(symbol, action, quantity, order_type, ...)- Place buy/sell ordersget_orders(status)- Get order history and statuscancel_order(order_id)- Cancel pending ordersget_trades()- Get execution history
Example AI Interactions
AI: "What are my current positions?"
→ Calls get_positions() tool
AI: "Buy 100 shares of AAPL at market price"
→ Calls place_order(symbol="AAPL", action="BUY", quantity=100, order_type="MKT")
AI: "Show me AAPL's price history for the last week"
→ Calls get_historical_data(symbol="AAPL", duration="1 W", bar_size="1 day")
🔗 Related Links
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。