Icecast MCP Server

Icecast MCP Server

Analyzes and optimizes Icecast streaming server configurations with automated security audits, performance recommendations, and capacity planning for internet radio stations.

Category
访问服务器

README

icecast-mcp

<div align="center">

MCP TypeScript License: MIT

MCP server for analyzing and optimizing Icecast streaming server configurations.

FeaturesInstallationUsageToolsDocker

</div>


Overview

A Model Context Protocol (MCP) server for analyzing Icecast streaming server configurations. Provides automated security audits, performance recommendations, and capacity planning for internet radio stations and streaming infrastructure.

Features:

  • Security auditing (authentication, credentials, access control)
  • Performance analysis (limits, buffers, threading)
  • Capacity planning based on listener counts
  • Best practice recommendations for different deployment sizes

Features

Configuration Analysis

  • Parse and validate Icecast XML configurations
  • Detect security issues (default credentials, missing authentication)
  • Identify performance bottlenecks (buffer sizes, thread pools, limits)
  • Check reliability settings (timeouts, fallback mounts)
  • Validate proxy configurations (X-Forwarded-For, hostname)

Best Practice Recommendations

  • Tailored advice for small, medium, and large deployments
  • Capacity planning based on expected listener counts
  • Security hardening guidelines
  • Performance tuning recommendations

What It Checks

Category Checks
Security Authentication config, default credentials, relay passwords, admin security
Performance Client limits, buffer sizes (queue/burst), thread pools, log verbosity
Capacity Listener count vs. limits, resource allocation, scaling recommendations
Reliability Mount points, fallback configuration, timeout settings
Operations Hostname setup, proxy config, logging, log rotation

Installation

From Source

git clone https://github.com/splinesreticulating/icecast-mcp.git
cd icecast-mcp
npm install
npm run build

Using Docker

docker build -t icecast-mcp .

Via npm (coming soon)

npm install -g icecast-mcp

Usage

With Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "icecast": {
      "command": "node",
      "args": ["/absolute/path/to/icecast-mcp/build/index.js"]
    }
  }
}

Or using Docker:

{
  "mcpServers": {
    "icecast": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "/path/to/your/configs:/configs:ro",
        "icecast-mcp"
      ]
    }
  }
}

With MCP Inspector

Test the server locally:

npm run build
npm run inspector

With Other MCP Clients

The server communicates over stdio and follows the MCP specification. Compatible with any MCP client including Claude Desktop.

Tools

analyze_icecast_config

Analyze an Icecast XML configuration file and receive detailed recommendations.

Input Schema:

{
  "configPath": "/path/to/icecast.xml",
  "expectedListeners": 200
}
Parameter Type Required Default Description
configPath string Yes - Absolute path to Icecast XML config
expectedListeners number No 100 Expected concurrent listeners

Example Usage:

Ask Claude: "Analyze my Icecast config at /etc/icecast2/icecast.xml for 500 expected listeners"

Output Format:

# Icecast Configuration Analysis

Analyzing: /etc/icecast2/icecast.xml
Expected listeners: 500

## CRITICAL ISSUES

### Security: No authentication configured
Configure source-password and admin-password to secure your stream.

## WARNINGS

### Capacity: Client limit is quite low
Client limit is 50. This may cause connection rejections during peak times.
Current: 50
Recommended: 128

## INFORMATION

### Configuration: X-Forwarded-For is enabled
Good! This is correct when running behind a reverse proxy like Caddy.

get_icecast_best_practices

Get deployment-specific best practices and configuration recommendations.

Input Schema:

{
  "useCase": "medium"
}
Parameter Type Required Options Description
useCase string Yes small, medium, large Deployment size

Use Case Definitions:

  • small: < 50 concurrent listeners
  • medium: 50-500 concurrent listeners
  • large: 500+ concurrent listeners

Example Usage:

Ask Claude: "What are the best practices for a medium-sized Icecast deployment?"

Output: Comprehensive guide covering limits, security, mount points, performance, and reliability for your deployment size.

Docker

Building

docker build -t icecast-mcp .

Running with Volume Mounts

docker run -i --rm \
  -v /path/to/your/icecast/config:/config:ro \
  icecast-mcp

Docker Compose Example

version: '3.8'
services:
  icecast-mcp:
    build: .
    volumes:
      - ./ops/icecast:/config:ro
    stdin_open: true
    tty: true

Development

# Install dependencies
npm install

# Run in development mode (hot reload)
npm run dev

# Build TypeScript
npm run build

# Test with MCP Inspector
npm run inspector

# Run tests (if available)
npm test

Example Usage

A typical workflow:

  1. Install and configure icecast-mcp
  2. Ask Claude: "Analyze my Icecast config at /etc/icecast2/icecast.xml for 200 listeners"
  3. Get specific recommendations:
    • Optimize client limits for your traffic
    • Add relay password configuration
    • Configure fallback mount points
    • Enable log archiving

Architecture

┌─────────────────┐
│  MCP Client     │  (Claude Desktop, etc.)
│  (AI Assistant) │
└────────┬────────┘
         │ stdio
         │
┌────────▼────────┐
│  icecast-mcp    │
│  MCP Server     │
├─────────────────┤
│ • XML Parser    │
│ • Analyzer      │
│ • Validator     │
│ • Recommender   │
└────────┬────────┘
         │
         ▼
   icecast.xml

Contributing

Contributions welcome! Areas for improvement:

  • Additional analysis rules
  • Support for more Icecast features
  • Performance metrics integration
  • Live server monitoring
  • Configuration generation

License

MIT License - see LICENSE file for details.

Acknowledgments


<div align="center">

Report BugRequest Feature

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选