Icecast MCP Server
Analyzes and optimizes Icecast streaming server configurations with automated security audits, performance recommendations, and capacity planning for internet radio stations.
README
icecast-mcp
<div align="center">
MCP server for analyzing and optimizing Icecast streaming server configurations.
Features • Installation • Usage • Tools • Docker
</div>
Overview
A Model Context Protocol (MCP) server for analyzing Icecast streaming server configurations. Provides automated security audits, performance recommendations, and capacity planning for internet radio stations and streaming infrastructure.
Features:
- Security auditing (authentication, credentials, access control)
- Performance analysis (limits, buffers, threading)
- Capacity planning based on listener counts
- Best practice recommendations for different deployment sizes
Features
Configuration Analysis
- Parse and validate Icecast XML configurations
- Detect security issues (default credentials, missing authentication)
- Identify performance bottlenecks (buffer sizes, thread pools, limits)
- Check reliability settings (timeouts, fallback mounts)
- Validate proxy configurations (X-Forwarded-For, hostname)
Best Practice Recommendations
- Tailored advice for small, medium, and large deployments
- Capacity planning based on expected listener counts
- Security hardening guidelines
- Performance tuning recommendations
What It Checks
| Category | Checks |
|---|---|
| Security | Authentication config, default credentials, relay passwords, admin security |
| Performance | Client limits, buffer sizes (queue/burst), thread pools, log verbosity |
| Capacity | Listener count vs. limits, resource allocation, scaling recommendations |
| Reliability | Mount points, fallback configuration, timeout settings |
| Operations | Hostname setup, proxy config, logging, log rotation |
Installation
From Source
git clone https://github.com/splinesreticulating/icecast-mcp.git
cd icecast-mcp
npm install
npm run build
Using Docker
docker build -t icecast-mcp .
Via npm (coming soon)
npm install -g icecast-mcp
Usage
With Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"icecast": {
"command": "node",
"args": ["/absolute/path/to/icecast-mcp/build/index.js"]
}
}
}
Or using Docker:
{
"mcpServers": {
"icecast": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-v",
"/path/to/your/configs:/configs:ro",
"icecast-mcp"
]
}
}
}
With MCP Inspector
Test the server locally:
npm run build
npm run inspector
With Other MCP Clients
The server communicates over stdio and follows the MCP specification. Compatible with any MCP client including Claude Desktop.
Tools
analyze_icecast_config
Analyze an Icecast XML configuration file and receive detailed recommendations.
Input Schema:
{
"configPath": "/path/to/icecast.xml",
"expectedListeners": 200
}
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
configPath |
string | Yes | - | Absolute path to Icecast XML config |
expectedListeners |
number | No | 100 | Expected concurrent listeners |
Example Usage:
Ask Claude: "Analyze my Icecast config at /etc/icecast2/icecast.xml for 500 expected listeners"
Output Format:
# Icecast Configuration Analysis
Analyzing: /etc/icecast2/icecast.xml
Expected listeners: 500
## CRITICAL ISSUES
### Security: No authentication configured
Configure source-password and admin-password to secure your stream.
## WARNINGS
### Capacity: Client limit is quite low
Client limit is 50. This may cause connection rejections during peak times.
Current: 50
Recommended: 128
## INFORMATION
### Configuration: X-Forwarded-For is enabled
Good! This is correct when running behind a reverse proxy like Caddy.
get_icecast_best_practices
Get deployment-specific best practices and configuration recommendations.
Input Schema:
{
"useCase": "medium"
}
| Parameter | Type | Required | Options | Description |
|---|---|---|---|---|
useCase |
string | Yes | small, medium, large |
Deployment size |
Use Case Definitions:
- small: < 50 concurrent listeners
- medium: 50-500 concurrent listeners
- large: 500+ concurrent listeners
Example Usage:
Ask Claude: "What are the best practices for a medium-sized Icecast deployment?"
Output: Comprehensive guide covering limits, security, mount points, performance, and reliability for your deployment size.
Docker
Building
docker build -t icecast-mcp .
Running with Volume Mounts
docker run -i --rm \
-v /path/to/your/icecast/config:/config:ro \
icecast-mcp
Docker Compose Example
version: '3.8'
services:
icecast-mcp:
build: .
volumes:
- ./ops/icecast:/config:ro
stdin_open: true
tty: true
Development
# Install dependencies
npm install
# Run in development mode (hot reload)
npm run dev
# Build TypeScript
npm run build
# Test with MCP Inspector
npm run inspector
# Run tests (if available)
npm test
Example Usage
A typical workflow:
- Install and configure icecast-mcp
- Ask Claude: "Analyze my Icecast config at
/etc/icecast2/icecast.xmlfor 200 listeners" - Get specific recommendations:
- Optimize client limits for your traffic
- Add relay password configuration
- Configure fallback mount points
- Enable log archiving
Architecture
┌─────────────────┐
│ MCP Client │ (Claude Desktop, etc.)
│ (AI Assistant) │
└────────┬────────┘
│ stdio
│
┌────────▼────────┐
│ icecast-mcp │
│ MCP Server │
├─────────────────┤
│ • XML Parser │
│ • Analyzer │
│ • Validator │
│ • Recommender │
└────────┬────────┘
│
▼
icecast.xml
Contributing
Contributions welcome! Areas for improvement:
- Additional analysis rules
- Support for more Icecast features
- Performance metrics integration
- Live server monitoring
- Configuration generation
License
MIT License - see LICENSE file for details.
Acknowledgments
- Built with @modelcontextprotocol/sdk
<div align="center">
</div>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。