
Image Processor MCP Server
Enables optimization, conversion to WebP, and uploading of images to Vercel Blob storage, supporting both local files and external URLs.
Tools
process_and_upload_image
Process a local image file (optimize, resize, convert to WebP) and upload to Vercel Blob
process_and_upload_image_from_url
Process an image from a URL (optimize, resize, convert to WebP) and upload to Vercel Blob
README
Image Processor MCP Server
This MCP server provides tools for image processing and uploading to Vercel Blob storage. It allows you to:
- Optimize and resize images (from local files or URLs)
- Convert images to WebP format
- Upload both versions to Vercel Blob storage
Features
- Image Optimization: Resize and optimize images for better performance
- WebP Conversion: Convert images to the WebP format for smaller file sizes
- Vercel Blob Integration: Automatically upload processed images to Vercel Blob storage
- Customizable Dimensions: Specify custom dimensions for image resizing
- URL Support: Process images from external URLs
Installation
The server is already installed and configured in the MCP settings file. It uses the Vercel Blob token from your environment variables.
Usage
You can use the MCP server in Claude by using the use_mcp_tool
function:
For Local Images
<use_mcp_tool>
<server_name>image-processor</server_name>
<tool_name>process_and_upload_image</tool_name>
<arguments>
{
"imagePath": "/path/to/image.png",
"newName": "new-image-name",
"width": 550,
"height": 300
}
</arguments>
</use_mcp_tool>
For Images from URLs
<use_mcp_tool>
<server_name>image-processor</server_name>
<tool_name>process_and_upload_image_from_url</tool_name>
<arguments>
{
"imageUrl": "https://example.com/image.jpg",
"newName": "new-image-name",
"width": 550,
"height": 300
}
</arguments>
</use_mcp_tool>
Parameters for Local Images
imagePath
(required): Path to the image file to processnewName
(required): New name for the processed image (without extension)width
(optional): Width to resize the image to (default: 550)height
(optional): Height to resize the image to (default: 300)
Parameters for URL Images
imageUrl
(required): URL of the image to processnewName
(required): New name for the processed image (without extension)width
(optional): Width to resize the image to (default: 550)height
(optional): Height to resize the image to (default: 300)
Response
The server will return a JSON response with the following structure:
{
"success": true,
"message": "Successfully processed and uploaded image: new-image-name",
"results": {
"png": {
"fileName": "new-image-name_small.png",
"localPath": "/path/to/temp/new-image-name_small.png",
"blobUrl": "https://vercel-blob-url/new-image-name_small.png"
},
"webp": {
"fileName": "new-image-name.webp",
"localPath": "/path/to/temp/new-image-name.webp",
"blobUrl": "https://vercel-blob-url/new-image-name.webp"
}
}
}
Implementation Details
The server uses:
- Sharp: For image processing and optimization
- @vercel/blob: For uploading to Vercel Blob storage
- fs-extra: For file system operations
Examples
Example 1: Processing a Local Image
<use_mcp_tool>
<server_name>image-processor</server_name>
<tool_name>process_and_upload_image</tool_name>
<arguments>
{
"imagePath": "/pathto_file/image_name.png",
"newName": "test-processed-image",
"width": 550,
"height": 300
}
</arguments>
</use_mcp_tool>
Example 2: Processing an Image from URL
<use_mcp_tool>
<server_name>image-processor</server_name>
<tool_name>process_and_upload_image_from_url</tool_name>
<arguments>
{
"imageUrl": "https://pplx-res.cloudinary.com/image/upload/v1749567759/pplx_project_search_images/6dff647e4fb1083aecf9ea6b1d49ea19386be588.jpg",
"newName": "cloud-image",
"width": 550,
"height": 300
}
</arguments>
</use_mcp_tool>
Both examples will:
- Take the image (from local path or URL)
- Optimize and resize it to 550x300 pixels
- Create a PNG version with "_small" suffix
- Create a WebP version
- Upload both to Vercel Blob
- Return the URLs of the uploaded images
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。