Implore MCP
Enables AI assistants to request human input through interactive GUI dialogs with quiz-style questions, supporting multiple choice and free-form responses for clarification, decisions, and knowledge extraction.
README
Implore MCP
MCP to Implore the Human Intelligence
A Model Context Protocol (MCP) server that provides a quiz-style tool to request input from humans via GUI dialogs. This tool allows AI assistants to "implore" human users for clarification, decisions, or knowledge extraction through an interactive visual interface.
Inspired by the Interactive Feedback MCP pattern.
Features
- Quiz-Style Interface: Display multiple questions in a single, scrollable dialog
- Multiple Question Types:
- Multiple choice (radio buttons with automatic "Other..." option including text input)
- Free-form text input
- Process Isolation: GUI runs in a separate subprocess to avoid blocking the MCP server
- Structured Responses: Get organized answers mapped to question IDs
- FastMCP Integration: Built on FastMCP for easy MCP server implementation
- Cross-Platform: Works on Windows, macOS, and Linux
Architecture
The tool uses a decoupled architecture:
server.py: MCP server that handles tool requests and launches the GUI subprocessimplore_ui.py: Separate GUI process that displays quiz dialogs and communicates results via temporary files- Communication via temporary JSON files ensures the main server process remains responsive
Installation
- Clone or download this repository:
git clone <repository-url>
cd implore-mcp
- Install dependencies using uv:
uv sync
Or install directly:
uv pip install fastmcp>=2.0.0 psutil>=7.0.0 pyside6>=6.8.2.1
Usage
Running the Server
Start the MCP server:
uv run server.py
Or using Python directly:
python server.py
Configuring in MCP Clients
Add to your MCP client configuration (e.g., Claude Desktop, Cline):
Using uv:
{
"mcpServers": {
"implore": {
"command": "uv",
"args": ["run", "C:/path/to/implore-mcp/server.py"]
}
}
}
Using Python directly:
{
"mcpServers": {
"implore": {
"command": "python",
"args": ["C:/path/to/implore-mcp/server.py"]
}
}
}
Using the Tool
Once configured, the AI assistant can use the implore tool to request input from you:
Example 1: Single Free-Form Question
Tool: implore
Arguments: {
"questions": [
{
"text": "What is your preferred color scheme?",
"type": "free_form"
}
]
}
Result: {
"success": true,
"answers": {
"q1": "Dark mode"
}
}
Example 2: Multiple Choice Question
Tool: implore
Arguments: {
"questions": [
{
"id": "framework",
"text": "Which web framework should we use?",
"type": "multiple_choice",
"options": ["React", "Vue", "Angular", "Svelte"]
}
],
"title": "Framework Selection"
}
Result: {
"success": true,
"answers": {
"framework": "React"
}
}
Example 3: Mixed Question Types
Tool: implore
Arguments: {
"questions": [
{
"id": "deployment",
"text": "Where should we deploy the application?",
"type": "multiple_choice",
"options": ["AWS", "Azure", "Google Cloud", "On-Premise"]
},
{
"id": "timeline",
"text": "What is your preferred timeline?",
"type": "free_form"
},
{
"id": "budget",
"text": "What is your budget range?",
"type": "multiple_choice",
"options": ["Under $100", "$100-$500", "$500-$1000", "Over $1000"]
},
{
"id": "additional",
"text": "Any additional requirements or concerns?",
"type": "free_form"
}
],
"title": "Project Planning Questions"
}
Result: {
"success": true,
"answers": {
"deployment": "AWS",
"timeline": "2-3 months",
"budget": "$500-$1000",
"additional": "Need to support mobile devices"
}
}
Tool Reference
implore
Displays a quiz-style GUI dialog to request input from the user. The dialog runs in a separate process and can handle multiple questions of different types.
Parameters:
questions(list, required): Array of question objects for quiz-style interfacetitle(str, optional): The title of the dialog window. Default: "Human Input Requested"
Question Object Structure:
Each question in the list should have:
text(str, required): The question text to displaytype(str, required): Either "multiple_choice" or "free_form"- For "multiple_choice", an automatic "Other..." option with free-text input is always included after the provided options.
options(list, optional): List of option strings (required for multiple_choice)id(str, optional): Unique identifier (auto-generated as "q1", "q2", etc. if not provided)
Returns:
Dictionary with structured response:
- Success:
{"success": True, "answers": {question_id: answer, ...}} - Cancelled:
{"success": False, "cancelled": True} - Error:
{"success": False, "error": "error message"}
Notes:
- Multiple choice questions that aren't answered will have
nullvalue - Free-form questions that aren't answered will have empty string value
- Prefer using comprehensive multiple choice options for most questions to guide responses, reserving free-form for simple copy-paste values or easily answered open questions. The automatic "Other..." option in multiple choice provides flexibility for additional input.
Use Cases
The implore tool is perfect for:
- Requirement Clarification: Ask users to clarify ambiguous requirements
- Design Decisions: Get user preferences on architecture or design choices
- Configuration Selection: Let users choose from predefined configuration options
- Knowledge Extraction: Extract implicit knowledge from users through targeted questions
- Progress Checkpoints: Confirm decisions before proceeding with major changes
- Feature Prioritization: Ask users to prioritize features or tasks
- Error Resolution: When multiple solutions exist, ask user which approach to take
Dependencies
- fastmcp (>=2.0.0): FastMCP framework for building MCP servers
- psutil (>=7.0.0): System and process utilities
- pyside6 (>=6.8.2.1): Qt for Python - GUI framework
License
[Add your license here]
Contributing
[Add contribution guidelines here]
Credits
Developed with inspiration from the Interactive Feedback MCP pattern.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。