IndexFoundry MCP

IndexFoundry MCP

Creates deterministic, auditable vector databases from any content source with deployable RAG applications. Supports multiple embedding providers and vector databases with fine-grained pipeline control or project-based workflows.

Category
访问服务器

README

IndexFoundry-MCP

Deterministic Vector Index Factory - An MCP server for automated, auditable vector database creation from any content source, with deployable project-based workflows.

Tools don't think, they act.

Every tool in this server is:

  • Deterministic: Same inputs → same outputs
  • Idempotent: Re-running produces identical artifacts (unless force: true)
  • Auditable: Every operation produces manifests, hashes, and logs
  • Composable: Tools can be run independently or chained

Architecture

IndexFoundry provides two complementary workflows:

1. Run-Based Pipeline (Fine-Grained Control)

Individual pipeline runs with isolated artifacts, suitable for experimentation and detailed auditing.

2. Project-Based Workflow (Deployable RAG Applications)

Self-contained projects that generate deployment-ready repositories with MCP server, Dockerfile, and Railway configuration.

Pipeline Phases (Run-Based)

Connect → Extract → Normalize → Index → Serve
   ↓         ↓          ↓          ↓       ↓
  raw/    extracted/  normalized/  indexed/  served/

Phase 1: Connect

Fetch content from URLs, sitemaps, folders, or PDFs. Every artifact gets a content hash.

Phase 2: Extract

Convert raw bytes to text using pinned extractors (pdfminer, cheerio, etc.).

Phase 3: Normalize

Chunk text deterministically, enrich metadata (no LLM), and deduplicate.

Phase 4: Index

Generate embeddings with a pinned model, upsert to vector DB.

Phase 5: Serve

Generate OpenAPI spec and optionally start a retrieval API.

Quick Start

# Install dependencies
npm install

# Build
npm run build

# Run on stdio (for Claude Desktop, Cline, etc.)
npm start

# Run as HTTP server
npm run start:http

Workflow Options

Option 1: Run-Based Pipeline (Detailed Control)

Use individual pipeline tools for fine-grained control over each phase:

// Create a new run
const runId = crypto.randomUUID();
await client.callTool("indexfoundry_connect_folder", {
  run_id: runId,
  path: "/path/to/documents",
  glob: "**/*.pdf"
});

// Extract PDF content
await client.callTool("indexfoundry_extract_pdf", {
  run_id: runId,
  pdf_path: "raw/<sha256>.pdf",
  mode: "layout"
});

// Chunk: text
await client.callTool("indexfoundry_normalize_chunk", {
  run_id: runId,
  input_paths: ["extracted/<sha256>.pages.jsonl"],
  strategy: "recursive",
  max_chars: 1500,
  overlap_chars: 150
});

// Generate embeddings
await client.callTool("indexfoundry_index_embed", {
  run_id: runId,
  model: {
    provider: "openai",
    model_name: "text-embedding-3-small",
    api_key_env: "OPENAI_API_KEY"
  }
});

// Upsert to vector DB
await client.callTool("indexfoundry_index_upsert", {
  run_id: runId,
  provider: "local",
  connection: { collection: "my_docs" }
});

Option 2: Project-Based Workflow (Deployable RAG)

Create a self-contained, deployable RAG application:

// Create a new project
await client.callTool("indexfoundry_project_create", {
  project_id: "my-rag-app",
  name: "My RAG Search",
  description: "Searchable knowledge base for documentation",
  embedding_model: {
    provider: "openai",
    model_name: "text-embedding-3-small",
    api_key_env: "OPENAI_API_KEY"
  },
  chunk_config: {
    strategy: "recursive",
    max_chars: 1500,
    overlap_chars: 150
  }
});

// Add data sources
await client.callTool("indexfoundry_project_add_source", {
  project_id: "my-rag-app",
  url: "https://docs.example.com",
  source_name: "Documentation Site",
  tags: ["docs", "api"]
});

// Build: vector database
await client.callTool("indexfoundry_project_build", {
  project_id: "my-rag-app"
});

// Query: built index
await client.callTool("indexfoundry_project_query", {
  project_id: "my-rag-app",
  query: "How do I configure authentication?",
  mode: "hybrid",
  top_k: 5
});

// Export for deployment
await client.callTool("indexfoundry_project_export", {
  project_id: "my-rag-app",
  server_name: "my-rag-server",
  include_http: true,
  railway_config: true
});

After export, a project directory contains a complete deployable repository:

  • Dockerfile - Container configuration
  • railway.toml - Railway deployment config
  • src/index.ts - Generated MCP server with search tools
  • README.md - Project-specific documentation

Push to GitHub and deploy:

cd projects/my-rag-app
git init
git add .
git commit -m "Initial RAG application"
git push
# Then connect to Railway and deploy

Tool Overview

Run-Based Pipeline Tools

Connect Phase

  • indexfoundry_connect_url - Fetch a single URL with domain allowlisting
  • indexfoundry_connect_sitemap - Crawl a sitemap with URL filtering
  • indexfoundry_connect_folder - Load local files with glob patterns
  • indexfoundry_connect_pdf - Fetch PDF with metadata extraction

Extract Phase

  • indexfoundry_extract_pdf - PDF to text (layout/plain/OCR modes)
  • indexfoundry_extract_html - HTML to clean text with structure preservation
  • indexfoundry_extract_document - Generic document extraction (markdown, txt, CSV, JSON)

Normalize Phase

  • indexfoundry_normalize_chunk - Split text into chunks (recursive/paragraph/heading/page/sentence/fixed)
  • indexfoundry_normalize_enrich - Add metadata (language detection, regex tags, section classification)
  • indexfoundry_normalize_dedupe - Remove duplicates (exact/simhash/minhash)

Index Phase

  • indexfoundry_index_embed - Generate embeddings (OpenAI/Cohere/sentence-transformers/local)
  • indexfoundry_index_upsert - Write to vector DB (Pinecone/Weaviate/Qdrant/Milvus/Chroma/local)
  • indexfoundry_index_build_profile - Configure retrieval (top_k, hybrid search, reranking)

Serve Phase

  • indexfoundry_serve_openapi - Generate OpenAPI 3.1 specification
  • indexfoundry_serve_start - Start HTTP search API server
  • indexfoundry_serve_stop - Stop running API server
  • indexfoundry_serve_status - Get server status
  • indexfoundry_serve_query - Query running server directly

Run Utilities

  • indexfoundry_run_status - Get detailed status of a run
  • indexfoundry_run_list - List all runs with filtering
  • indexfoundry_run_diff - Compare two runs (config, chunks, timing)
  • indexfoundry_run_cleanup - Delete old runs with retention policies

Project-Based Workflow Tools

Project Management

  • indexfoundry_project_create - Create a new project with embedding and chunk config
  • indexfoundry_project_list - List all projects with optional statistics
  • indexfoundry_project_get - Get project details, manifest, and sources
  • indexfoundry_project_delete - Delete a project (requires confirm: true)

Source Management

  • indexfoundry_project_add_source - Add data source (url/sitemap/folder/pdf) with tags

Build & Query

  • indexfoundry_project_build - Process all pending sources (fetch, chunk, embed, upsert)
  • indexfoundry_project_query - Search project's vector database (semantic/keyword/hybrid)

Deployment

  • indexfoundry_project_export - Generate deployment files (Dockerfile, MCP server, railway.toml)

Directory Structures

Run-Based Structure

runs/<run_id>/
├── manifest.json           # Master audit trail
├── config.json             # Frozen config
├── raw/                    # Fetched artifacts
├── extracted/              # Text extraction
├── normalized/             # Chunks
├── indexed/                # Embeddings
├── served/                 # API artifacts
└── logs/                   # Event logs

Project-Based Structure

projects/<project_id>/
├── project.json            # Project manifest (embedding config, stats)
├── sources.jsonl          # Source records (url/sitemap/folder/pdf)
├── data/
│   ├── chunks.jsonl       # Indexed chunks
│   └── vectors.jsonl     # Generated embeddings
├── runs/                  # Per-source build runs
├── src/
│   └── index.ts         # Generated MCP server
├── Dockerfile             # Container configuration
├── railway.toml           # Railway deployment config
├── package.json           # Server dependencies
├── tsconfig.json          # TypeScript config
└── README.md             # Project documentation

Configuration

Environment Variables

# Run-based pipeline
INDEXFOUNDRY_RUNS_DIR=./runs     # Where to store runs

# Embeddings
OPENAI_API_KEY=sk-...           # For OpenAI embeddings
EMBEDDING_API_KEY=sk-...         # Generic env variable (configurable per project)

# Server
PORT=3000                        # For HTTP transport
TRANSPORT=stdio                  # stdio or http

Project Configuration

Projects store configuration in project.json:

{
  "project_id": "my-rag",
  "name": "My RAG Search",
  "embedding_model": {
    "provider": "openai",
    "model_name": "text-embedding-3-small",
    "api_key_env": "OPENAI_API_KEY"
  },
  "chunk_config": {
    "strategy": "recursive",
    "max_chars": 1500,
    "overlap_chars": 150
  }
}

Example Usage

Run-Based Pipeline Example

// Create a new run
const runId = crypto.randomUUID();

// Connect: fetch from folder
await client.callTool("indexfoundry_connect_folder", {
  run_id: runId,
  path: "/path/to/documents",
  glob: "**/*.pdf"
});

// Extract: PDF to text
await client.callTool("indexfoundry_extract_pdf", {
  run_id: runId,
  pdf_path: "raw/<sha256>.pdf",
  mode: "layout"
});

// Normalize: chunk text
await client.callTool("indexfoundry_normalize_chunk", {
  run_id: runId,
  input_paths: ["extracted/<sha256>.pages.jsonl"],
  strategy: "recursive",
  max_chars: 1500,
  overlap_chars: 150
});

// Index: generate embeddings
await client.callTool("indexfoundry_index_embed", {
  run_id: runId,
  model: {
    provider: "openai",
    model_name: "text-embedding-3-small",
    api_key_env: "OPENAI_API_KEY"
  }
});

// Upsert to local vector DB
await client.callTool("indexfoundry_index_upsert", {
  run_id: runId,
  provider: "local",
  connection: { collection: "my_docs" }
});

// Serve: start HTTP API
await client.callTool("indexfoundry_serve_start", {
  run_id: runId,
  port: 8080
});

Project-Based Workflow Example

// Create a deployable RAG project
await client.callTool("indexfoundry_project_create", {
  project_id: "my-docs-rag",
  name: "Company Documentation Search",
  description: "Searchable knowledge base for internal docs",
  embedding_model: {
    provider: "openai",
    model_name: "text-embedding-3-small",
    api_key_env": "OPENAI_API_KEY"
  },
  chunk_config: {
    strategy: "recursive",
    max_chars: 1500,
    overlap_chars: 150
  }
});

// Add multiple sources
await client.callTool("indexfoundry_project_add_source", {
  project_id: "my-docs-rag",
  url: "https://docs.company.com",
  source_name: "Main Docs",
  tags: ["docs", "internal"]
});

await client.callTool("indexfoundry_project_add_source", {
  project_id: "my-docs-rag",
  folder_path: "/path/to/pdfs",
  source_name: "Policy Documents",
  tags: ["policy", "pdf"]
});

// Build: vector database
await client.callTool("indexfoundry_project_build", {
  project_id: "my-docs-rag"
});

// Query: index
const results = await client.callTool("indexfoundry_project_query", {
  project_id: "my-docs-rag",
  query: "What is the vacation policy?",
  mode: "hybrid",
  top_k: 5,
  filter_tags: ["policy"]
});

// Export for deployment
await client.callTool("indexfoundry_project_export", {
  project_id: "my-docs-rag",
  server_name: "docs-search-server",
  server_description: "Internal documentation search API",
  include_http: true,
  railway_config: true
});

After export, a project directory contains a deployable repository:

cd projects/my-docs-rag
git init
git add .
git commit -m "Initial RAG application"
git push origin main
# Deploy on Railway

Development

# Development with watch mode
npm run dev

# Run tests
npm test

# Lint
npm run lint

# Test with MCP Inspector
npm run inspector

Testing

The MCP server has been validated with end-to-end testing:

  • ✅ Project creation, listing, and retrieval
  • ✅ Source addition (URL, folder, PDF, sitemap)
  • ✅ Build pipeline (fetch → chunk → embed → upsert)
  • ✅ Vector search with semantic, keyword, and hybrid modes
  • ✅ Deployment file generation (Dockerfile, railway.toml, MCP server)

Deployment

Railway Deployment

  1. Create and export a project:
await client.callTool("indexfoundry_project_export", {
  project_id: "my-rag",
  railway_config: true
});
  1. Push to GitHub and connect to Railway

  2. Railway automatically detects railway.toml and deploys

Docker Deployment

cd projects/my-rag
docker build -t my-rag-server .
docker run -p 8080:8080 -e OPENAI_API_KEY=sk-... my-rag-server

Determinism Guarantees

  1. Sorted inputs: File lists sorted before processing
  2. Stable IDs: Chunk IDs derived from content + position
  3. Content hashes: SHA256 on every artifact
  4. Pinned versions: Extractor versions locked in config
  5. No randomness: No sampling, shuffling, or non-deterministic algorithms

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选