Infercnv-MCP
Provides a natural language interface for inferring Copy Number Variations (CNVs) from scRNA-Seq data using the infercnvpy framework. It enables users to perform data preprocessing, CNV inference, and visualization through chromosome heatmaps, UMAP, and t-SNE plots.
README
Infercnv-MCP
Natural language interface for Copy Number Variation (CNV) inference from scRNA-Seq data with infercnvpy through MCP.
🪩 What can it do?
- IO module for reading and writing scRNA-Seq data, load gene position
- Preprocessing module for neighbors computation and data preparation
- Tool module for CNV inference, cnv score
- Plotting module for chromosome heatmaps, UMAP, and t-SNE visualizations
❓ Who is this for?
- Researchers who want to infer CNVs from scRNA-Seq data using natural language
- Agent developers who want to integrate CNV analysis into their applications
🌐 Where to use it?
You can use infercnv-mcp in most AI clients, plugins, or agent frameworks that support the MCP:
- AI clients, like Cherry Studio
- Plugins, like Cline
- Agent frameworks, like Agno
📚 Documentation
scmcphub's complete documentation is available at https://docs.scmcphub.org
🏎️ Quickstart
Install
Install from PyPI
pip install infercnv-mcp
you can test it by running
infercnv-mcp run
run infercnv-mcp locally
Refer to the following configuration in your MCP client:
check path
$ which infercnv
/home/test/bin/infercnv-mcp
"mcpServers": {
"infercnv-mcp": {
"command": "/home/test/bin/infercnv-mcp",
"args": [
"run"
]
}
}
Run infercnv-server remotely
Refer to the following configuration in your MCP client:
Run it in your server
infercnv-mcp run --transport shttp --port 8000
Then configure your MCP client, like this:
http://localhost:8000/mcp
🤝 Contributing
If you have any questions, welcome to submit an issue, or contact me(hsh-me@outlook.com). Contributions to the code are also welcome!
Citing
If you use infercnv-mcp in your research, please consider citing following work:
https://github.com/icbi-lab/infercnvpy
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。