Inmovilla MCP Server

Inmovilla MCP Server

Enables interaction with the Inmovilla real estate CRM platform to manage properties, clients, owners, and retrieve platform enumerations through natural language.

Category
访问服务器

README

mcp-inmovilla

A Model Context Protocol (MCP) server that provides tools to interact with the Inmovilla API. This server enables LLMs to manage properties, clients, owners, and retrieve various enumerations from the Inmovilla real estate platform.

About MCP

The Model Context Protocol (MCP) is an open protocol that enables seamless integration between LLM applications and external data sources and tools. Learn more:

Installation

1. Clone and Install Dependencies

git clone <repository-url>
cd mcp-inmovilla
npm install

2. Build the Project

npm run build

3. Configure Environment Variables

Create a .env file in the project root with the following variables:

INMOVILLA_API_TOKEN=your_inmovilla_token_here
OPENAI_API_KEY=your_openai_api_key_here

Obtaining the Inmovilla API Token

To get your Inmovilla API token:

  1. Log in to Inmovilla CRM
  2. Navigate to Ajustes > Opciones > Token para API Rest
  3. Generate your token
  4. Copy the token to your .env file

Note: Tokens will automatically expire after 3 months of inactivity.

Obtaining the OpenAI API Key

  1. Sign up or log in to OpenAI Platform
  2. Navigate to API keys section
  3. Create a new API key
  4. Copy the key to your .env file

4. Start the Server

npm start

The MCP server will start on port 1337 at http://localhost:1337/mcp.

Project Structure

mcp-inmovilla/
├── src/
│   ├── tools/              # MCP Tools for Inmovilla API
│   │   ├── CreateClientTool.ts
│   │   ├── CreateOwnerTool.ts
│   │   ├── CreatePropertyTool.ts
│   │   ├── DeleteClientTool.ts
│   │   ├── DeleteOwnerTool.ts
│   │   ├── GetClientTool.ts
│   │   ├── GetEnumTool.ts
│   │   ├── GetOwnerTool.ts
│   │   ├── GetPropertyExtraInfoTool.ts
│   │   ├── GetPropertyLeadsTool.ts
│   │   ├── GetPropertyTool.ts
│   │   ├── ListPropertiesTool.ts
│   │   ├── SearchClientsTool.ts
│   │   ├── UpdateClientTool.ts
│   │   ├── UpdateOwnerTool.ts
│   │   └── UpdatePropertyTool.ts
│   └── index.ts            # Server entry point
├── python_tester/          # Python client for testing
│   ├── openai2mcp_test.py  # OpenAI chatbot client
│   └── requirements.txt    # Python dependencies
├── package.json
├── tsconfig.json
├── .env                    # Environment variables (create this)
└── README.md

Python Testing Client

The python_tester folder contains a Python script that connects to the MCP server and allows you to interact with it using an OpenAI-powered chatbot.

Setup

  1. Ensure the MCP server is running (see step 4 above)

  2. Install Python dependencies:

    cd python_tester
    pip install -r requirements.txt
    
  3. Run the chatbot:

    python3 openai2mcp_test.py
    

How It Works

The Python client:

  • Connects to the MCP server via Streamable HTTP on http://localhost:1337/mcp
  • Uses the OpenAI API (GPT-4) to process natural language queries
  • Automatically discovers and calls available MCP tools
  • Provides a console-based chat interface

Example Usage

You: List all available properties
AI: [Calls list_properties tool and returns results]

You: Get information about property with reference ABC123
AI: [Calls get_property tool with the reference and returns property details]

You: What types of properties are available?
AI: [Calls get_enum tool for property types and returns the list]

Type quit or exit to end the chat session.

Available Tools

The MCP server provides the following tools for interacting with the Inmovilla API:

Properties

  • create_property - Create a new property or prospect
  • get_property - Get property details by code or reference
  • get_property_extra_info - Get extra information (portal publication info, leads)
  • get_property_leads - Get leads for properties within a date range
  • list_properties - List all properties
  • update_property - Update an existing property

Clients

  • create_client - Create a new client
  • get_client - Get client details by code
  • search_clients - Search for clients
  • update_client - Update an existing client
  • delete_client - Delete a client

Owners

  • create_owner - Create a new owner
  • get_owner - Get owner details
  • update_owner - Update an existing owner
  • delete_owner - Delete an owner

Enumerations

  • get_enum - Get enum values for various categories (calidades, tipos, paises, ciudades, zonas)

Development

Watch Mode

To automatically rebuild on file changes:

npm run watch

Adding New Tools

Tools are automatically loaded from the src/tools/ directory. Each tool extends the MCPTool class and defines:

  • name - Tool identifier
  • description - What the tool does
  • schema - Input parameters using Zod
  • execute() - Tool implementation

API Documentation

For detailed information about the Inmovilla API endpoints and parameters, refer to Documentación API REST v1.html in the project root.

License

[Your License Here]

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选