Instruction MCP Server
Serves markdown instructions as tools to provide LLMs with team playbooks, coding standards, domain knowledge, and personal workflows through version-controlled files.
README
instruction-mcp
A minimal MCP server that serves markdown instructions as tools.
Why?
LLMs work better with context. Instead of copy-pasting instructions into every conversation, define them once and deliver them to all your LLM applications — Claude Desktop, Claude Code, and any MCP-compatible client.
Use cases:
- Team playbooks — Coding standards, review checklists, incident response
- Domain knowledge — Data dictionaries, API conventions, business rules
- Personal workflows — Analysis templates, writing guides, debugging steps
No UI, no database — just a YAML config and markdown files. Version control your instructions with git, share them across your team.
How It Works
- Define tools in
instruction.yamlpointing to markdown files - Run the MCP server
- Claude sees your tools and calls them based on conversation context
- Tool returns the markdown content
- Claude uses the instructions to help with your task
Understanding Tool Behavior
Tool descriptions determine when Claude calls the tool. Claude reads all available tool descriptions and picks the relevant one based on your prompt.
Tool responses are context, not commands. When a tool returns markdown, it's added to the conversation like any other text. Claude doesn't automatically "follow" it — your prompt determines that.
Retrieval vs Action
# Just retrieves and summarizes
"What's our code review process?"
# Retrieves AND follows the instructions
"Review this PR following our code review process"
The word "following" makes Claude apply the instructions rather than just report them.
Being Explicit
For guaranteed results, name the tool directly:
"Use get_code_review to review this PR and follow the checklist"
This ensures:
- The tool is called (no relying on description matching)
- The instructions are followed (not just retrieved)
Quick Start
1. Create your config
# instruction.yaml
version: "1"
tools:
get_coding_standards:
title: "Coding Standards"
description: "Team coding standards and best practices"
default: "general"
instructions:
general: "resources/standards/general.md"
typescript: "resources/standards/typescript.md"
testing: "resources/standards/testing.md"
2. Add your markdown files
my-instructions/
├── instruction.yaml
└── resources/
└── standards/
├── general.md
├── typescript.md
└── testing.md
3. Validate
npx instruction-mcp validate -c instruction.yaml
4. Add to Claude Desktop
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"my-instructions": {
"command": "npx",
"args": ["instruction-mcp", "-c", "instruction.yaml"],
"cwd": "/absolute/path/to/my-instructions"
}
}
}
5. Use in Claude
"Review this PR for me"
Claude will call get_coding_standards and use your team's standards to review the code.
CLI
# Validate config and check all files exist
npx instruction-mcp validate -c instruction.yaml
# List all tools and instructions
npx instruction-mcp list -c instruction.yaml
# Start server (stdio mode)
npx instruction-mcp -c instruction.yaml
Config Reference
version: "1"
tools:
tool_name: # Tool name exposed to Claude
title: "Human Title" # Display name
description: "..." # Helps Claude decide when to use this tool
default: "key" # Optional: default if no instruction specified
instructions:
key1: "path/to/file.md" # Instruction key -> markdown file
key2: "path/to/other.md"
| Field | Type | Required | Description |
|---|---|---|---|
title |
string | yes | Human-readable tool name |
description |
string | yes | Description for Claude's tool selection |
default |
string | no | Default instruction key |
instructions |
map | yes | Key-value pairs of name: filepath |
Example
See example/ for a complete working setup with analyst playbooks and code review checklists, including Docker deployment.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。