IntelliDiff MCP Server

IntelliDiff MCP Server

Enables intelligent file and folder comparison with advanced text normalization, duplicate detection, and line-level diff analysis. Provides secure workspace-constrained file operations with CRC32-based exact matching and smart text comparison capabilities.

Category
访问服务器

README

IntelliDiff MCP Server

An intelligent file and folder comparison MCP server with advanced text normalization and duplicate detection capabilities.

Features

  • File Comparison: CRC32-based exact comparison and smart text comparison with normalization
  • Folder Comparison: Recursive directory comparison with orphan detection
  • Duplicate Detection: Find identical files within directories
  • Text Normalization: Handle case, whitespace, tabs, line endings, and Unicode differences
  • Line-Level Analysis: Detailed diff output with line ranges and targeted file reading
  • Clean Output: Markdown-formatted text responses instead of JSON bloat
  • Security: Workspace root validation prevents path traversal attacks
  • Performance: Streaming for large files, configurable limits, symlink loop prevention

Installation

# Clone or download the project
cd intellidiff-mcp

# Install with uv
uv init --python 3.12
uv add "fastmcp>=2.11"

# Run the server
uv run python intellidiff_server.py /path/to/workspace/root

Project Structure

The server is built with a clean modular architecture:

  • intellidiff_server.py (52 lines) - Main server entry point and tool registration
  • workspace_security.py - Path validation and workspace boundary enforcement
  • file_operations.py - Core file utilities (CRC32, text detection, normalization)
  • tools.py - Individual MCP tool implementations
  • folder_operations.py - Folder comparison and duplicate detection logic

MCP Configuration

Local/stdio Configuration

{
  "mcpServers": {
    "intellidiff": {
      "type": "stdio",
      "command": "uv",
      "args": ["run", "--directory", "/path/to/intellidiff-mcp", "python", "intellidiff_server.py", "/workspace/root"]
    }
  }
}

Local/stdio Configuration with Environment Variables

{
  "mcpServers": {
    "intellidiff": {
      "type": "stdio",
      "command": "uv", 
      "args": ["run", "--directory", "/path/to/intellidiff-mcp", "python", "intellidiff_server.py", "/workspace/root"],
      "env": {
        "INTELLIDIFF_MAX_TEXT_SIZE": "5242880",
        "INTELLIDIFF_MAX_BINARY_SIZE": "1073741824",
        "INTELLIDIFF_MAX_DEPTH": "15",
        "INTELLIDIFF_CHUNK_SIZE": "32768"
      }
    }
  }
}

Remote/HTTP Configuration

{
  "mcpServers": {
    "intellidiff": {
      "type": "http",
      "url": "http://localhost:8000/mcp/"
    }
  }
}

Place this configuration in:

  • VS Code: .vscode/mcp.json (project) or user settings
  • Claude Desktop: claude_desktop_config.json
  • Cursor: .cursor/mcp.json (project) or ~/.cursor/mcp.json (user)
  • LM Studio: ~/.lmstudio/mcp.json

Environment Variables

Variable Default Description
INTELLIDIFF_MAX_TEXT_SIZE 10485760 (10MB) Maximum size for text file comparison
INTELLIDIFF_MAX_BINARY_SIZE 1073741824 (1GB) Maximum size for binary file CRC32
INTELLIDIFF_MAX_DEPTH 10 Maximum directory recursion depth
INTELLIDIFF_CHUNK_SIZE 65536 (64KB) File reading chunk size

Tools

validate_workspace_path

Validate that a path is within the workspace root.

Parameters:

  • path (string): Path to validate

get_file_hash

Get CRC32 hash and basic information about a file.

Parameters:

  • file_path (string): Path to the file

compare_files

Compare two files with various modes and options.

Parameters:

  • left_path (string): Path to first file
  • right_path (string): Path to second file
  • mode (string): Comparison mode - "exact", "smart_text", or "binary"
  • ignore_blank_lines (boolean): Skip empty lines during comparison
  • ignore_newline_differences (boolean): Normalize line endings
  • ignore_whitespace (boolean): Ignore leading/trailing whitespace
  • ignore_case (boolean): Case-insensitive comparison
  • normalize_tabs (boolean): Convert tabs to spaces
  • unicode_normalize (boolean): Apply Unicode NFKC normalization

compare_folders

Compare two folder structures recursively.

Parameters:

  • left_path (string): Path to first folder
  • right_path (string): Path to second folder
  • max_depth (integer): Maximum recursion depth (default: from env var)
  • include_binary (boolean): Include binary files in comparison
  • comparison_mode (string): "exact" or "smart_text"

find_identical_files

Find files with identical content within a folder.

Parameters:

  • folder_path (string): Path to folder to scan
  • max_depth (integer): Maximum recursion depth (default: from env var)

read_file_lines

Read specific line ranges from a text file with optional context.

Parameters:

  • file_path (string): Path to the text file
  • start_line (integer): Starting line number (1-based, default: 1)
  • end_line (integer): Ending line number (1-based, default: end of file)
  • context_lines (integer): Additional context lines before/after range (default: 0)

Usage Examples

Compare Two Files

# Exact comparison - clean markdown output
result = await client.call_tool("compare_files", {
    "left_path": "file1.txt",
    "right_path": "file2.txt", 
    "mode": "exact"
})
print(result.content[0].text)
# Output: ✅ **Exact Comparison**
#         📁 Left: file1.txt (CRC32: abc123)
#         📁 Right: file2.txt (CRC32: abc123)
#         🔍 Result: Identical

# Smart text comparison with normalization
result = await client.call_tool("compare_files", {
    "left_path": "file1.txt",
    "right_path": "file2.txt",
    "mode": "smart_text",
    "ignore_case": True,
    "ignore_whitespace": True,
    "normalize_tabs": True
})
print(result.content[0].text)
# Output: ✅ **Smart Text Comparison - Identical**
#         📁 Left: file1.txt (1.2KB)
#         📁 Right: file2.txt (1.3KB)
#         🔍 Result: Identical (normalized: case, whitespace, tabs)

Compare Folders

result = await client.call_tool("compare_folders", {
    "left_path": "folder_a",
    "right_path": "folder_b",
    "max_depth": 5
})

# Folder comparison returns structured data for programmatic access
summary = result.data["summary"]
orphans = result.data["orphans"]
identical_files = result.data["identical_files"]

Find Duplicates

result = await client.call_tool("find_identical_files", {
    "folder_path": "my_folder",
    "max_depth": 10
})

# Duplicate detection returns structured data for analysis
duplicates = result.data["duplicates"]
wasted_bytes = result.data["summary"]["total_wasted_bytes"]

Read Specific Lines

# Read lines 10-20 with 2 lines of context
result = await client.call_tool("read_file_lines", {
    "file_path": "my_file.txt",
    "start_line": 10,
    "end_line": 20,
    "context_lines": 2
})

# Clean line-numbered output with >>> markers for requested range
print(result.content[0].text)
# Output:     8| function setup() {
#            9|     console.log("Starting...");
#         >>> 10|     const data = loadData();
#         >>> 11|     if (!data) {
#         >>> 12|         throw new Error("No data");
#         >>> 13|     }
#            14| }

Working with Diff Results

# Compare files and get detailed diff information
result = await client.call_tool("compare_files", {
    "left_path": "file1.txt",
    "right_path": "file2.txt",
    "mode": "smart_text"
})

# Access structured diff data
if not result.structured_content["identical"]:
    change_summary = result.structured_content["change_summary"]
    
    # Get affected line ranges
    left_ranges = change_summary["line_ranges"]["left_affected"]
    right_ranges = change_summary["line_ranges"]["right_affected"]
    
    # Read specific sections that changed
    for range_info in left_ranges:
        lines_result = await client.call_tool("read_file_lines", {
            "file_path": "file1.txt",
            "start_line": range_info["start"],
            "end_line": range_info["end"],
            "context_lines": 3
        })
        print(f"Changed section: {lines_result.content[0].text}")

Security

  • All file paths are validated against the workspace root
  • Path traversal attacks are prevented through path resolution
  • Symlink loops are detected and avoided
  • File size limits prevent memory exhaustion
  • Read-only operations only

Performance

  • Streaming I/O for large files
  • Early exit on size mismatches
  • CRC32 caching for repeated operations
  • Configurable chunk sizes and limits
  • Progress reporting for large operations

License

MIT License - see LICENSE file for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选