𓂀𓁢𓋹𝔸ℕ𝕌𝔹𝕀𝕊𓋹𓁢𓂀 - Intelligent Guidance for

𓂀𓁢𓋹𝔸ℕ𝕌𝔹𝕀𝕊𓋹𓁢𓂀 - Intelligent Guidance for

Hey @roocode community! I'm thrilled to share a project born from my work with Roocode and the vision of an AI-powered development team: the Anubis MCP Server! This system is heavily inspired by Roocode and designed to orchestrate an AI development workflow based on agile methodology. It simulates

Category
访问服务器

README

𓂀𓁢𓋹𝔸ℕ𝕌𝔹𝕀𝕊𓋹𓁢𓂀 - Intelligent Guidance for AI Workflows

Transform your AI agent from chaotic coder to intelligent workflow orchestrator with three powerful capabilities:

<div align="center">

Three Pillars of Intelligent Workflow Management

Intelligent Guidance | Seamless Transitions | Beautiful Reporting

</div>

Docker Pulls Docker Image Size Docker Image Version MCP Server

** NPM Package** • ** Docker Hub** • ** Website**


CORE VALUE #1: INTELLIGENT GUIDANCE FOR AI AGENTS

Your AI agent receives step-by-step intelligent rules for every development task:

// Before Anubis: Chaotic, directionless coding
"Create a user authentication system"Where do I start?

// With Anubis: Intelligent guidance at every step
"Create a user authentication system"Requirements Analysis (Researcher Role)
   System Architecture (Architect Role)
   Implementation Plan (Senior Dev Role)
   Quality Validation (Code Review Role)
   Progress Report (Auto-generated)

Benefits:

  • 30-50% faster development with structured workflows
  • 40-60% fewer defects through quality gates
  • 100% MCP-compliant guidance without execution

CORE VALUE #2: SEAMLESS TASK & ROLE TRANSITIONS

Never lose context when switching between roles or continuing tasks:

// Seamless context preservation across transitions
{
  "currentRole": "architect",
  "completedSteps": ["requirements", "design"],
  "context": {
    "decisions": ["JWT for auth", "PostgreSQL for storage"],
    "rationale": "Scalability and security requirements",
    "nextSteps": ["Implementation by Senior Dev role"]
  }
}
// → Switch roles without losing any context!

Features:

  • Intelligent context preservation between role switches
  • Automatic task handoffs with full history
  • Role-based boundaries for focused expertise
  • Pause and resume workflows anytime

CORE VALUE #3: BEAUTIFUL HTML REPORTING

Transform your workflow data into stunning, interactive reports:

<div align="center"> <img src="https://github.com/Hive-Academy/Anubis-MCP/assets/placeholder/report-preview.png" alt="Anubis Report Preview" width="600"> </div>

What you get:

  • Interactive dashboards with Chart.js visualizations
  • Mobile-responsive Tailwind CSS design
  • Progress tracking with visual indicators
  • Performance analytics for each role
  • Detailed task breakdowns with timelines
  • Export-ready reports for stakeholders

QUICK START

Option 1: NPX (Recommended)

// Add to your MCP client config
{
  "mcpServers": {
    "anubis": {
      "command": "npx",
      "args": ["-y", "@hive-academy/anubis"]
    }
  }
}

Option 2: Docker

{
  "mcpServers": {
    "anubis": {
      "command": "docker", 
      "args": ["run", "-i", "-v", "anubis-data:/app/data", "--rm", "hiveacademy/anubis"]
    }
  }
}

** Benefits**: Zero installation • Always latest version • Project isolation • Auto-dependency management


SUPERCHARGE YOUR AI AGENT IN 3 STEPS

Step 1: Initialize Intelligent Guidance

Please initialize Anubis workflow rules for [your-agent-name] by calling the init_rules MCP tool

Step 2: Start Your Workflow

Begin a new workflow for [your-project] with Anubis guidance

Step 3: Generate Beautiful Reports

Generate an interactive workflow report for the current execution

Supported Agents: cursorcopilotroocodekilocode


INTELLIGENT ROLE SYSTEM

Role Intelligent Purpose Key Powers
Boomerang Strategic Orchestration Project setup, task creation, workflow management
Researcher Knowledge Gathering Evidence-based research, feasibility analysis
Architect System Design Technical architecture, implementation planning
Senior Developer Code Manifestation High-quality implementation, testing
Code Review Quality Guardian Security validation, performance review, approval

REAL-WORLD EXAMPLE

// 1. Agent receives intelligent guidance
const guidance = await get_step_guidance({
  executionId: 'auth-system-123',
  roleId: 'senior-developer'
});

// 2. Anubis provides structured rules
{
  "guidance": {
    "step": "Implement JWT authentication",
    "approach": [
      "1. Create User model with Prisma",
      "2. Implement password hashing with bcrypt",
      "3. Create JWT token generation service",
      "4. Add authentication middleware"
    ],
    "qualityChecklist": [
      "SOLID principles applied",
      "Unit tests coverage > 80%",
      "Security best practices",
      "Error handling implemented"
    ],
    "context": {
      "previousDecisions": ["PostgreSQL", "JWT strategy"],
      "nextRole": "code-review"
    }
  }
}

// 3. Agent executes with confidence and reports
await report_step_completion({
  result: 'success',
  metrics: {
    filesCreated: 8,
    testsWritten: 15,
    coverage: 85
  }
});

// 4. Beautiful report auto-generated! 📊

TECHNICAL EXCELLENCE

Enterprise-Grade Architecture:

  • Backend: NestJS v11 + TypeScript
  • Database: Prisma ORM + SQLite/PostgreSQL
  • MCP: @rekog/mcp-nest v1.5.2
  • Analytics: Chart.js + Tailwind CSS
  • Runtime: Node.js ≥18.0.0

Production Ready:

  • MCP-compliant architecture
  • Zero execution violations
  • 75% test coverage
  • Sub-50ms cached responses

📚 DOCUMENTATION


🤝 CONTRIBUTING

# Development setup
npm install && npm run db:init && npm run start:dev

# Quality checks  
npm run test && npm run lint

Standards: MCP compliance • SOLID principles • Domain-driven design • Evidence-based development


LICENSE

MIT License - see LICENSE file for details.


THE ANUBIS PROMISE

<div align="center">

Intelligent GuidanceSeamless TransitionsBeautiful Reports

Transform your AI workflows from chaotic to intelligent. Give your agents the rules of the ancients with modern MCP-compliant architecture.

Ready to ascend? Add Anubis to your MCP config now!

</div>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选