Interactive Feedback MCP

Interactive Feedback MCP

A MCP server that enables human-in-the-loop workflow in AI-assisted development tools by allowing users to run commands, view their output, and provide textual feedback directly to the AI assistant.

Category
访问服务器

Tools

interactive_feedback

Request interactive feedback for a given project directory and summary

README

Interactive Feedback MCP

Developed by Fábio Ferreira (@fabiomlferreira). Check out dotcursorrules.com for more AI development enhancements.

Simple MCP Server to enable a human-in-the-loop workflow in AI-assisted development tools like Cursor. This server allows you to run commands, view their output, and provide textual feedback directly to the AI. It is also compatible with Cline and Windsurf.

Interactive Feedback UI - Main View Interactive Feedback UI - Command Section Open

Prompt Engineering

For the best results, add the following to your custom prompt in your AI assistant, you should add it on a rule or directly in the prompt (e.g., Cursor):

Whenever you want to ask a question, always call the MCP interactive_feedback.
Whenever you’re about to complete a user request, call the MCP interactive_feedback instead of simply ending the process. If the feedback is empty you can end the request and don't call the mcp in loop.

This will ensure your AI assistant uses this MCP server to request user feedback before marking the task as completed.

💡 Why Use This?

By guiding the assistant to check in with the user instead of branching out into speculative, high-cost tool calls, this module can drastically reduce the number of premium requests (e.g., OpenAI tool invocations) on platforms like Cursor. In some cases, it helps consolidate what would be up to 25 tool calls into a single, feedback-aware request — saving resources and improving performance.

Configuration

This MCP server uses Qt's QSettings to store configuration on a per-project basis. This includes:

  • The command to run.
  • Whether to execute the command automatically on the next startup for that project (see "Execute automatically on next run" checkbox).
  • The visibility state (shown/hidden) of the command section (this is saved immediately when toggled).
  • Window geometry and state (general UI preferences).

These settings are typically stored in platform-specific locations (e.g., registry on Windows, plist files on macOS, configuration files in ~/.config or ~/.local/share on Linux) under an organization name "FabioFerreira" and application name "InteractiveFeedbackMCP", with a unique group for each project directory.

The "Save Configuration" button in the UI primarily saves the current command typed into the command input field and the state of the "Execute automatically on next run" checkbox for the active project. The visibility of the command section is saved automatically when you toggle it. General window size and position are saved when the application closes.

Installation (Cursor)

Instalation on Cursor

  1. Prerequisites:
    • Python 3.11 or newer.
    • uv (Python package manager). Install it with:
      • Windows: pip install uv
      • Linux/Mac: curl -LsSf https://astral.sh/uv/install.sh | sh
  2. Get the code:
    • Clone this repository: git clone https://github.com/noopstudios/interactive-feedback-mcp.git
    • Or download the source code.
  3. Navigate to the directory:
    • cd path/to/interactive-feedback-mcp
  4. Install dependencies:
    • uv sync (this creates a virtual environment and installs packages)
  5. Run the MCP Server:
    • uv run server.py
  6. Configure in Cursor:
    • Cursor typically allows specifying custom MCP servers in its settings. You'll need to point Cursor to this running server. The exact mechanism might vary, so consult Cursor's documentation for adding custom MCPs.

    • Manual Configuration (e.g., via mcp.json) Remember to change the /Users/fabioferreira/Dev/scripts/interactive-feedback-mcp path to the actual path where you cloned the repository on your system.

      {
        "mcpServers": {
          "interactive-feedback-mcp": {
            "command": "uv",
            "args": [
              "--directory",
              "/Users/fabioferreira/Dev/scripts/interactive-feedback-mcp",
              "run",
              "server.py"
            ],
            "timeout": 600,
            "autoApprove": [
              "interactive_feedback"
            ]
          }
        }
      }
      
    • You might use a server identifier like interactive-feedback-mcp when configuring it in Cursor.

For Cline / Windsurf

Similar setup principles apply. You would configure the server command (e.g., uv run server.py with the correct --directory argument pointing to the project directory) in the respective tool's MCP settings, using interactive-feedback-mcp as the server identifier.

Development

To run the server in development mode with a web interface for testing:

uv run fastmcp dev server.py

This will open a web interface and allow you to interact with the MCP tools for testing.

Available tools

Here's an example of how the AI assistant would call the interactive_feedback tool:

<use_mcp_tool>
  <server_name>interactive-feedback-mcp</server_name>
  <tool_name>interactive_feedback</tool_name>
  <arguments>
    {
      "project_directory": "/path/to/your/project",
      "summary": "I've implemented the changes you requested and refactored the main module."
    }
  </arguments>
</use_mcp_tool>

Acknowledgements & Contact

If you find this Interactive Feedback MCP useful, the best way to show appreciation is by following Fábio Ferreira on X @fabiomlferreira.

For any questions, suggestions, or if you just want to share how you're using it, feel free to reach out on X!

Also, check out dotcursorrules.com for more resources on enhancing your AI-assisted development workflow.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选