IVR Flow Linter

IVR Flow Linter

Validates IVR flow definitions (JSON) to detect errors like unreachable nodes, dead ends, and missing fallbacks, providing scores and fix suggestions. Includes interactive visualization widget for ChatGPT and Claude Desktop integration.

Category
访问服务器

README

IVR Flow Linter

Build Status Python Version License

Deterministic IVR Flow Linter via MCP + ChatGPT Skybridge Widget

A Model Context Protocol (MCP) server that validates IVR flows (JSON) providing a score, error detection (unreachable nodes, dead ends), and suggested fixes. Includes a Skybridge-pattern HTML widget for visualizing results directly in ChatGPT.

Demo Video

Widget Screenshot

Features

  • Strict Validations: Unreachable nodes, dead ends, missing fallbacks, undefined variables.
  • Best Practices: Warning on long prompts, multiple questions, and irreversible actions without confirmation.
  • Idempotency: Consistent results via flow hashing.
  • Skybridge Widget: Interactive HTML/JS visualization with zero external dependencies.
  • MCP Compatible: Works with both ChatGPT Actions and Claude Desktop.

Architecture

  • Server: FastAPI with JSON-RPC 2.0 (/mcp)
  • Linter: Pure Python deterministic engine
  • Widget: Inline HTML injection (text/html+skybridge)

Local Development

Prerequisites

  • Python 3.9+
  • git

Setup

# Clone
git clone https://github.com/arebury/ivr-flow-linter.git
cd ivr-flow-linter

# Virtual Environment
python -m venv venv
source venv/bin/activate

# Install
pip install -r requirements.txt

# Run Server
uvicorn src.main:app --host 0.0.0.0 --port 8000 --reload

Visit http://localhost:8000/demo for an interactive simulator.

Validating the Demo

  1. Run server: uvicorn src.main:app --host 0.0.0.0 --port 8000 --reload
  2. Open http://localhost:8000/demo
  3. Select "Invalid: Dead End" from the dropdown.
  4. Click Lint & Render.
  5. Verify:
    • "Parsed Result" tab shows errors.
    • Widget renders the flow with error indicators.

Deployment (Render)

This project includes a render.yaml for 1-click deployment on Render.

  1. Create a new Web Service on Render.
  2. Connect your GitHub repository: https://github.com/arebury/ivr-flow-linter.
  3. Select "Python 3" runtime.
  4. Build Command: pip install -r requirements.txt
  5. Start Command: uvicorn src.main:app --host 0.0.0.0 --port $PORT

Connecting to ChatGPT (Apps SDK / MCP)

This server acts as an MCP Server that exposes the lint_flow tool. The tool returns a Skybridge-compatible widget (text/html+skybridge) for rich visualization.

  1. Deploy the service to a public URL (e.g., https://your-app.onrender.com).
  2. Register the app in the OpenAI Developer Portal (for Apps SDK) using the manifest at /.well-known/ai-plugin.json.
  3. Alternatively, for Custom Actions (GPTs):
    • Import configuration from https://your-app.onrender.com/openapi.yaml.
    • Ensure the model knows how to interpret the ui field in the response (Skybridge pattern).

Connecting to Claude (Desktop)

Add the server to your Claude Desktop configuration (claude_desktop_config.json):

Local:

{
  "mcpServers": {
    "ivr-linter": {
      "command": "uvicorn",
      "args": ["src.main:app", "--port", "8000"],
      "cwd": "/absolute/path/to/ivr-flow-linter"
    }
  }
}

Remote (via Stdio Wrapper - Advanced): (Typically Claude Desktop connects to local processes. For remote MCP, use a local bridge or simple local-proxy).

Examples

See /examples directory for 10 sample flows (5 valid, 5 invalid) including:

  • valid_basic.json: Simple greeting
  • valid_payment.json: Transaction flow
  • invalid_unreachable.json: Disconnected nodes
  • invalid_dead_end.json: Stuck user path

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选