Jenkins MCP Server
Enables AI assistants to interact with Jenkins CI/CD systems through natural language, providing build management, job monitoring, log analysis, and debugging capabilities.
README
Jenkins MCP Server
A Python-based Jenkins MCP server using the Model Context Protocol Python SDK. This server integrates with Jenkins CI/CD systems to provide AI-powered insights, build management, and debugging capabilities.
Note: This server follows the Model Context Protocol (MCP), enabling AI assistants to interact with Jenkins systems directly.
Installation
Option 1: Install as a Python Package (Recommended)
The easiest way to install and run this server is as a Python package:
# Install from PyPI
pip install jenkins-mcp-server==0.1.6
# Or install with uv
uv pip install jenkins-mcp-server==0.1.6
# Run the server
jenkins-mcp-server --verbose
Option 2: Clone and Run
# Clone the repository
git clone https://github.com/yourusername/jenkins-mcp-server.git
cd jenkins-mcp-server
# Create a virtual environment and install dependencies
uv venv
uv pip install -e .
# Run the server
python -m jenkins_mcp_server
VS Code Integration
Configure for VS Code
For quick installation, use one of the one-click install buttons below:
For manual installation:
- Install the Model Context Protocol (MCP) extension for VS Code
- Create a
.vscode/mcp.jsonfile in your workspace with the following configuration:
{
"servers": {
"jenkins-mcp-server": {
"type": "stdio",
"command": "jenkins-mcp-server",
"args": ["--verbose"],
"env": {
"JENKINS_URL": "http://your-jenkins-server:8080",
"JENKINS_USERNAME": "your-username",
"JENKINS_TOKEN": "your-api-token"
// Or use JENKINS_PASSWORD instead of JENKINS_TOKEN if using password authentication
}
}
}
}
-
Configure your authentication method:
- Recommended: Use API token authentication by setting
JENKINS_TOKEN - Alternatively: Use password authentication by setting
JENKINS_PASSWORD
- Recommended: Use API token authentication by setting
-
Connect any AI assistant that supports MCP (like GitHub Copilot) to your Jenkins environment
Components
Resources
The server provides access to Jenkins jobs as resources:
- Custom jenkins:// URI scheme for accessing individual jobs
- Each job resource contains details about the job and its builds in JSON format
- Job status is reflected in the resource description
Prompts
The server provides prompts for Jenkins data analysis:
-
analyze-job-status: Creates analysis of all Jenkins jobs
- Optional "detail_level" argument to control analysis depth (brief/detailed)
- Analyzes job statuses, identifies potential issues, and suggests improvements
-
analyze-build-logs: Analyzes build logs for a specific job
- Required "job_name" argument to specify which job to analyze
- Optional "build_number" argument (defaults to latest build)
- Examines build logs to identify issues, errors, warnings, and suggests fixes
Tools
The server implements the following tools for Jenkins operations:
-
trigger-build: Triggers a Jenkins job build
- Required "job_name" argument to specify which job to build
- Optional "parameters" object containing job parameters
- Returns build queue information
-
stop-build: Stops a running Jenkins build
- Required "job_name" and "build_number" arguments
- Halts an in-progress build execution
-
get-job-details: Gets detailed information about a specific job
- Required "job_name" argument
- Returns comprehensive job information including recent builds
-
list-jobs: Lists all Jenkins jobs
- Returns a list of all Jenkins jobs with their statuses
-
get-build-info: Gets information about a specific build
- Required "job_name" and "build_number" arguments
- Returns build status, duration, and other details
-
get-build-console: Gets console output from a build
- Required "job_name" and "build_number" arguments
- Returns the console log output from a specific build
-
get-queue-info: Gets information about the Jenkins build queue
- Returns information about pending builds in the queue
-
get-node-info: Gets information about a Jenkins node/agent
- Required "node_name" argument
- Returns node status and configuration details
-
list-nodes: Lists all Jenkins nodes/agents
- Returns a list of all Jenkins nodes/agents and their statuses
Configuration
Option 1: VS Code Settings (Recommended)
Configure your Jenkins connection in VS Code settings:
- Open VS Code Settings (Press
Cmd+,on Mac orCtrl+,on Windows/Linux) - Click on the "Open Settings (JSON)" button in the top right
- Add these settings:
<details> <summary>Using the User Settings (JSON)</summary>
{
"mcp.servers": {
"jenkins": {
"type": "stdio",
"command": "uvx",
"args": ["jenkins-mcp-server"]
}
},
"jenkins-mcp-server.jenkins": {
"url": "http://your-jenkins-server:8080",
"username": "your-username",
"token": "********" // Replace with your Jenkins API token
}
}
</details>
<details> <summary>Using workspace .vscode/mcp.json file</summary>
Create a file at .vscode/mcp.json with these contents:
{
"servers": {
"jenkins-mcp-server": {
"type": "stdio",
"command": "jenkins-mcp-server",
"args": [
"--verbose"
]
}
}
}
And in your .vscode/settings.json file:
{
"jenkins-mcp-server.jenkins": {
"url": "http://your-jenkins-server:8080",
"username": "your-username",
"token": "********" // Replace with your Jenkins API token
}
}
</details>
This configuration:
- Registers the MCP server in VS Code
- Stores your Jenkins credentials securely in VS Code settings
- Uses
uvxto run the server automatically when needed
Option 2: Environment Variables
Alternatively, configure your Jenkins connection by setting environment variables:
-
Copy the
.env.examplefile to create a.envfile:cp .env.example .env -
Edit the
.envfile with your Jenkins details:JENKINS_URL=http://your-jenkins-server:8080 JENKINS_USERNAME=your-username JENKINS_PASSWORD=your-password # OR use an API token instead of password (recommended) JENKINS_TOKEN=your-api-token
Security Note: Using VS Code settings is more secure as they are stored encrypted. Environment variables in a
.envfile are stored in plain text.
Usage with AI Assistants
Once configured, AI assistants that support MCP can now interact with your Jenkins server through natural language. Here are some examples of what you can do:
GitHub Copilot Chat
- Open GitHub Copilot Chat in VS Code
- Type prompts like:
- "List all my Jenkins jobs"
- "What's the status of my 'deployment' job?"
- "Show me the build logs for the failed build in 'test-project'"
- "Trigger a new build for 'deploy-api'"
Command Line Usage
You can also run the server directly from the command line:
# Run the MCP server
uvx jenkins-mcp-server
# In another terminal, use curl to test it:
curl -X POST http://localhost:8080/mcp/v1/listResources -H "Content-Type: application/json" -d '{}'
Command-Line Usage
The uvx command makes it easy to use the MCP server in command-line environments without VS Code:
# Install UVX if you don't have it yet
pip install uv
# Install the Jenkins MCP server
uvx install jenkins-mcp-server
```bash
# Install UVX if you don't have it yet
pip install uv
# Install the Jenkins MCP server from PyPI
uvx install jenkins-mcp-server==0.1.6
# Run the server with verbose output
uvx jenkins-mcp-server --verbose
Testing from Command Line
You can manually send JSON-RPC requests:
echo '{"jsonrpc":"2.0","id":1,"method":"listResources","params":{}}' | uvx jenkins-mcp-server
Development Setup
If you're developing this MCP server:
- Clone this repository
- Install dependencies:
uv venv uv pip install -e ".[dev]" - Run the server in development mode:
python -m jenkins_mcp_server --verbose
VS Code Configuration for Development
For development in VS Code:
"mcp": {
"servers": {
"jenkins-mcp-server": {
"type": "stdio",
"command": "bash",
"args": [
"-c",
"cd ${workspaceFolder} && python -m jenkins_mcp_server --verbose"
]
}
}
}
- Install the GitHub Copilot Chat extension
- Enable MCP in Copilot settings
- Start a new chat with Copilot and interact with your Jenkins server!
3. Claude Desktop
For Claude Desktop users:
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
<details> <summary>Development Configuration</summary>
"mcpServers": {
"jenkins-mcp-server": {
"command": "uv",
"args": [
"run",
"jenkins-mcp-server"
]
}
}
</details>
<details> <summary>Published Configuration (using uvx)</summary>
"mcpServers": {
"jenkins-mcp-server": {
"command": "uvx",
"args": [
"jenkins-mcp-server"
]
}
}
</details>
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/ directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--tokenorUV_PUBLISH_TOKEN - Or username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
# If installed globally with uvx
npx @modelcontextprotocol/inspector uvx jenkins-mcp-server
# If installed in development mode
npx @modelcontextprotocol/inspector python -m jenkins_mcp_server
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。