Jenkins MCP Server

Jenkins MCP Server

A Model Context Protocol (MCP) server that enables AI tools like chatbots to interact with and control Jenkins, allowing users to trigger jobs, check build statuses, and perform other Jenkins operations through natural language.

Category
访问服务器

README

mcp_jenkins

A Jenkins MCP server. Model Context Protocol (MCP) lets AI tools (like chatbots) talk to and control your Jenkins setup, i. e. retrieve information and modify settings.

Note: This is a minimal experimental version of the MCP Jenkins server and is currently in early development.

Description

This project provides a Model Context Protocol (MCP) server for interacting with Jenkins. It allows users to trigger Jenkins jobs, get build statuses, and perform other Jenkins-related operations through the MCP interface.

Installation

To install the package and make the console scripts available, run:

pip install .

Usage

Once the package is installed using pip install ., the following console scripts become available in your shell environment:

  • mcp_jenkins_server: Runs the MCP server.
  • mcp_jenkins_client: Runs an example client.
  • mcp_jenkins_run_docker_build: Builds the Docker image for the server. This should be run before executing tests.
  • mcp_jenkins_run_docker_tests: Runs tests using Docker (e.g., server/client/server tests). This script typically requires the Docker image to be built first using mcp_jenkins_run_docker_build.

These scripts eliminate the need to manually manage Python paths or install requirements separately if the package has been installed.

Common Workflows

Running the Server

To run the MCP server using the installed script:

mcp_jenkins_server

Running the Example Client

To run the example client using the installed script:

mcp_jenkins_client

For example, to list builds for a job named "backups" using a specific model, you can run:

mcp_jenkins_client --model gemini-2.0-flash-001 "list builds backups"

This might produce output similar to:

Query: list builds backups
Result:
Recent builds for backups:
  - Build #1086: FAILURE (http://myjenkins:8080/job/backups/1086/)

Building and Testing with Docker

A common workflow for development and testing is to first build the Docker image and then execute the tests:

  1. Build the Docker image: This step prepares the environment needed for testing.

    mcp_jenkins_run_docker_build
    
  2. Run tests: After the build is complete, execute the tests.

    mcp_jenkins_run_docker_tests
    

This sequence ensures that tests are performed against the latest build in a consistent Dockerized environment.

OpenWebUI Integration

The file open-webui/open_webui_interface.py provides an example of how to integrate this MCP Jenkins server with an OpenWebUI instance.

To use it:

  1. In your OpenWebUI interface, navigate to the section for adding or configuring tools.
  2. Create a new tool.
  3. Copy the entire content of the open-webui/open_webui_interface.py file and paste it into the tool configuration in OpenWebUI.
  4. Important: You will need to adjust the connection parameters within the pasted code, specifically:
    • MCP_JENKINS_SERVER_URL: Set this environment variable in your OpenWebUI environment to the URL of your running MCP Jenkins server (e.g., http://localhost:5000). The script defaults to http://localhost:5000 if the variable is not set.
    • MCP_API_KEY: If your MCP Jenkins server is configured to require an API key, ensure this environment variable is set in your OpenWebUI environment. The script will print a warning if it's not found but will still attempt to make requests.

Once configured, the tools defined in open_webui_interface.py (e.g., list_jobs, trigger_build, get_build_status) should become available for use within your OpenWebUI chat interface.

License

This project is licensed under the MIT License.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选