Jina AI MCP Server
Provides access to Jina AI's Search Foundation APIs for embeddings, web search, content extraction, reranking, classification, and semantic text segmentation.
README
Jina AI MCP Server (Node.js Version)
An MCP server for Jina AI, providing tools for embeddings, reranking, and generation. This is the Node.js version.
Available Tools
This server provides the following tools, which are direct interfaces to the Jina AI Search Foundation APIs:
embeddings: Creates an embedding vector representing the input text.rerank: Reranks a list of documents based on a query.read: Extracts clean, LLM-friendly content from a single website URL.search: Performs a web search and returns LLM-friendly results.deepsearch: Combines web searching, reading, and reasoning for comprehensive investigation.segment: Splits text into semantic chunks or counts tokens.classify: Performs zero-shot classification for text.get_help: Returns the full Jina AI API documentation used to build this server.
Connecting with MCP Clients
To connect this server to your MCP-compatible client (like Cursor, shell-ai, etc.), you first need to publish this package to NPM or install it from a local path.
Using with npx (After Publishing)
Once the package is published on NPM, you can configure your client to use it with npx. Create a .env file with your JINA_API_KEY in the directory where you run the client, or make sure the environment variable is set.
Example for mcpServers.json:
{
"jina-ai-server": {
"command": "npx",
"args": [
"jina-ai-mcp-server-nodejs"
],
"env": {
"JINA_API_KEY": "your_jina_api_key_here"
}
}
}
Note: Passing the API key via env in the configuration is more secure than a global environment variable.
Local Development
- Clone the repository.
- Install dependencies:
npm install - Create a
.envfile in the root of the project and add your Jina AI API key.echo "JINA_API_KEY=your_jina_ai_api_key_here" > .env - Run the server in development mode:
npm run dev
Docker
Building for Production
To compile the TypeScript code to JavaScript:
npm run build
The compiled output will be in the dist directory.
You can then run the compiled code with:
npm start
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。