Jira - GitHub MCP Server

Jira - GitHub MCP Server

Enables end-to-end automation of developer workflows from Jira issue tracking to GitHub pull requests through natural language, allowing developers to search issues, create branches, commit changes, and manage PRs directly from their IDE.

Category
访问服务器

README

Jira - GitHub MCP Server

A modular and extensible Model Context Protocol (MCP) server for Jira and GitHub integration, enabling end-to-end automation of developer workflows - from issue tracking to code changes and pull request management - via AI agents inside the IDE.

Overview

  • Jira integration: fetch issues by filters, search via JQL, and transition issues across workflows
  • GitHub integration: create branches, open and merge PRs
  • Local Git operations: stage, commit, and push changes locally
  • IDE-native: works with any MCP-compatible agent (e.g., GitHub Copilot) over stdio
  • End-to-end workflow: Jira issue → branch → code → commit → PR → merge → Jira status update

Why

Developers constantly context-switch between Jira, GitHub, and their IDE, breaking focus and slowing down delivery. This project transforms that workflow into a seamless, IDE-native, conversational experience, allowing developers to move from Jira issue to merged pull request using natural language and AI-assisted automation.

Features

  • Retrieve, filter, and search Jira issues using fields and JQL
  • Transition Jira issues across workflow statuses
  • Automate branch creation as part of the Jira-driven workflow
  • Commit and push changes from the local Git repository
  • Create and merge GitHub pull requests
  • MCP resources providing workflow guidance and current issue context

Available Tools

Tool Description
jira_get_issue Retrieve a Jira issue by key (e.g., KAN-1) with configurable fields
jira_search_issues Search Jira using JQL; paginate and filter results
jira_get_my_issues List issues assigned to the current user, optionally filtered by status/type...
jira_transition_issue Move an issue to another status with optional comment
create_branch_for_issue Create a new Git branch (e.g., feature/KAN-15) based on a Jira issue
create_pull_request Create a PR on GitHub from a branch
git_commit_and_push Stage all changes, commit with a message, and push to a branch
merge_pull_request Merge a PR using squash, merge, or rebase; optionally check CI status

Project Structure

  • src/ — Application source code
    • server/ — MCP server entry point and tool registration
    • config/ — Configuration loading for Jira and GitHub
    • providers/ — Jira/GitHub API clients and local Git operations
    • tools/ — MCP tool definitions and implementations
    • resources/ — MCP resources (workflow guidance, issue context)
    • prompts/ — AI-facing prompts used internally by the server to guide agent behavior
  • tests/ — Integration and unit tests
  • pyproject.toml — Project metadata and dependencies
  • uv.lock — Dependency lockfile

Requirements

  • Python 3.10+
  • Git (available on PATH)
  • Jira instance (Cloud or self-hosted) with REST API v3 access
  • GitHub repository with token-based API access

Installation & Setup

1. Clone the Repository

git clone https://github.com/YOUR-USERNAME/jira-github-mcp.git
cd jira-github-mcp

2. Create & Activate a Virtual Environment

Using uv (recommended)

uv venv

Or with python

python -m venv .venv

3. Install Dependencies

Using uv (recommended):

uv sync

Or with pip:

pip install -r requirements.txt

The project depends on:

  • fastmcp: MCP protocol and server utilities

4. Configure Environment Variables

Create a .env file in the repository root:

# Jira Configuration
JIRA_BASE_URL=https://your-instance.atlassian.net
JIRA_EMAIL=your-email@example.com
JIRA_API_TOKEN=your-jira-api-token

# GitHub Configuration
GITHUB_TOKEN=your-github-personal-access-token
GIT_REPO_URL=https://github.com/owner/repo.git
GIT_DEFAULT_BRANCH=main

# Optional: Local Git Repository Path
# If omitted, defaults to the current working directory
GIT_REPO_LOCAL_PATH=/path/to/local/repo

Notes:

  • JIRA_BASE_URL should not end with /
  • Grant the GitHub PAT only the minimal permissions required (branches, pull requests, etc.)

5. Run the MCP Server

Run the server as a Python module:

python -m src.server.server

If you defined an entrypoint, you can also run:

mcp-server

6. Connect from an MCP Client

To use this server with an MCP client (e.g., VS Code / GitHub Copilot), configure the client to run the server from the project root.

Example MCP configuration:

{
  "servers": {
    "jira-github-mcp-server": {
      "type": "stdio",
      "command": "python",
      "args": ["-m", "src.server.server"],
      "cwd": "/absolute/path/to/jira-github-mcp"
    }
  }
}

Note: Replace /absolute/path/to/mcp-server with the actual path to the repository.

Connecting to GitHub Copilot

Here's how to connect and start using the server with Copilot:

  1. Open VS Code and ensure GitHub Copilot is installed
  2. Sign in with your GitHub account (if not already signed in)
  3. Add the MCP server configuration to your VS Code settings (see JSON above)
  4. Reload VS Code
  5. Start asking Copilot natural language questions—it will invoke the tools automatically

Example Workflow

This example demonstrates a complete issue-to-merge flow using GitHub Copilot with this MCP server.

  1. Discover the next task

    Ask Copilot:

    "What is the most urgent task assigned to me?"

    Call Tools:

    • jira_get_my_issues — list issues assigned to the user
    • jira_search_issues — prioritize by status or urgency

    Selected issue: KAN-42

  2. Start working on the issue

    Ask Copilot:

    "Start work on KAN-42"

    Call Tools:

    • jira_get_issue(issue_key="KAN-42")
    • create_branch_for_issue(issue_key="KAN-42")
    • jira_transition_issue(issue_key="KAN-42", to_status="In Progress")

    Make changes in your editor.

  3. Commit changes

    Ask Copilot:

    "Commit my changes with message 'Implement KAN-42'"

    Call Tools:

    • git_commit_and_push(message="Implement KAN-42", branch="feature/KAN-42")
  4. Create a pull request

    Ask Copilot:

    "Create a PR for KAN-42"

    Call Tools:

    • create_pull_request(issue_key="KAN-42", branch_name="feature/KAN-42")
    • jira_transition_issue(issue_key="KAN-42", to_status="In Review")

    Code review and CI checks run on GitHub.

  5. Merge and close the issue

    Ask Copilot:

    "Merge the PR and move KAN-42 to Done"

    Call Tools:

    • merge_pull_request(pr_number=123)
    • jira_transition_issue(issue_key="KAN-42", to_status="Done")

    Issue closed, code merged, workflow complete.

Use Cases

  • Day-to-day development workflows across Jira issues, branches, and pull requests
  • Code review processes with clear pull request status tracking
  • Sprint execution and task progress visibility
  • Rapid bug fixes and hotfix workflows
  • End-to-end feature development from issue to merge
  • Team collaboration with consistent status and ownership tracking

Future Enhancements

  • Multi-platform support: Extend integrations beyond GitHub to additional platforms (e.g. GitLab)
  • Smarter workflows: Multi-repo support, reusable JQL templates, and configurable automation rules
  • Deeper automation: AI-assisted PR/commit drafting, webhook-driven synchronization, and CI/CD feedback

Summary

This MCP server provides a clear and traceable development workflow by connecting Jira and GitHub through a single conversational interface.

By reducing manual coordination and keeping issues, branches, and pull requests in sync, it helps teams focus on development rather than process.

Designed with a focus on clarity, extensibility, and developer experience.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选