Jira-GitLab MCP Server

Jira-GitLab MCP Server

Integrates Jira and GitLab to enable AI agents to seamlessly manage issues, create branches, and automate SRE workflows from issue detection to fix deployment. Features AI-powered analysis for intelligent code generation and comprehensive automation across both platforms.

Category
访问服务器

README

Jira-GitLab MCP Server

A Python-based Model Context Protocol (MCP) server that integrates Jira and GitLab, enabling AI agents to seamlessly manage issues and branches across both platforms.

Features

  • Jira Integration: Fetch issues, add comments, and manage project data
  • GitLab Integration: Create branches, manage projects, and handle repository operations
  • AI-Powered Analysis: Real OpenAI integration for intelligent issue analysis and code generation
  • Automated Workflow: Complete SRE workflow from issue detection to fix deployment
  • Code Validation: AST-based validation with security pattern detection
  • Secure Configuration: Support for environment variables and encrypted credentials
  • Robust Error Handling: Comprehensive error management with retry mechanisms
  • Async Support: Full asynchronous operation for better performance
  • MCP Compliance: Fully compatible with the Model Context Protocol specification

Quick Start

Prerequisites

  • Python 3.8+
  • Jira account with API access
  • GitLab account with Personal Access Token

Installation

  1. Clone the repository:
git clone <repository-url>
cd mcp-jira-gitlab
  1. Install dependencies:
pip install -r requirements.txt
  1. Configure credentials (choose one method):

Option A: Environment Variables (Recommended)

export JIRA_BASE_URL="https://yourcompany.atlassian.net"
export JIRA_EMAIL="your-email@example.com"
export JIRA_API_TOKEN="your-jira-api-token"
export GITLAB_BASE_URL="https://gitlab.com"
export GITLAB_ACCESS_TOKEN="your-gitlab-personal-access-token"

Option B: Configuration File

cp config.json.sample config.json
# Edit config.json with your credentials
  1. Run the MCP server:
python mcp_server.py

Configuration

Environment Variables

Variable Description Required
JIRA_BASE_URL Your Jira instance URL Yes
JIRA_EMAIL Your Jira account email Yes
JIRA_API_TOKEN Jira API token Yes
GITLAB_BASE_URL GitLab instance URL No (defaults to gitlab.com)
GITLAB_ACCESS_TOKEN GitLab Personal Access Token Yes

Generating API Tokens

Jira API Token:

  1. Go to Atlassian Account Settings
  2. Click "Create API token"
  3. Copy the generated token

GitLab Personal Access Token:

  1. Go to GitLab → Settings → Access Tokens
  2. Create token with api, read_repository, and write_repository scopes
  3. Copy the generated token

MCP Tools

create_branch_for_issue

Creates a GitLab branch for a Jira issue and links them.

Parameters:

  • issue_key (string): Jira issue key (e.g., "PROJ-123")
  • project_id (integer): GitLab project ID
  • base_branch (string, optional): Base branch (default: "main")

Branch Naming Convention: feature/{issue_key}-fix

Example:

{
  "issue_key": "PROJ-123",
  "project_id": 42,
  "base_branch": "main"
}

get_jira_issues

Fetch Jira issues using JQL query.

Parameters:

  • jql (string, optional): JQL query string
  • max_results (integer, optional): Maximum results (default: 50)

Example:

{
  "jql": "project = DEMO AND status = 'To Do'",
  "max_results": 25
}

comment_on_issue

Add a comment to a Jira issue.

Parameters:

  • issue_key (string): Jira issue key
  • comment (string): Comment text

Example:

{
  "issue_key": "PROJ-123",
  "comment": "Branch created and ready for development"
}

get_issues_by_tags

Fetch Jira issues by project and tags (labels).

Parameters:

  • project_key (string): Jira project key (e.g., "PROJ", "DEMO")
  • tags (array): List of tags/labels to filter by (1-10 tags)
  • max_results (integer, optional): Maximum results (default: 50, max: 100)

Example:

{
  "project_key": "PROJ",
  "tags": ["AI-Fix", "AutoFix"],
  "max_results": 25
}

Use Cases:

  • Find bugs tagged for AI-assisted fixing: ["AI-Fix", "AutoFix"]
  • Locate security issues: ["security", "vulnerability"]
  • Filter performance problems: ["performance", "optimization"]
  • Identify technical debt: ["tech-debt", "refactor"]

analyze_and_fix_issue

Use AI to analyze a Jira issue and generate code fixes.

Parameters:

  • issue_key (string): Jira issue key to analyze
  • model (string, optional): AI model to use (default: "gpt-4-turbo")
  • validation_level (string, optional): Code validation strictness ("basic" or "strict")
  • include_context (boolean, optional): Include repository context (default: true)

Example:

{
  "issue_key": "PROJ-123",
  "model": "gpt-4-turbo",
  "validation_level": "basic"
}

commit_ai_fix

Commit AI-generated fixes to GitLab branch with validation.

Parameters:

  • project_id (integer): GitLab project ID
  • branch_name (string): Branch name to commit to
  • files (array): Files to commit with content and actions
  • commit_message (string): Commit message

Example:

{
  "project_id": 42,
  "branch_name": "ai-fix/PROJ-123",
  "files": [
    {
      "path": "src/main.py",
      "content": "# Fixed code here",
      "action": "update"
    }
  ],
  "commit_message": "AI-generated fix for PROJ-123"
}

create_merge_request

Create a GitLab merge request.

Parameters:

  • project_id (integer): GitLab project ID
  • source_branch (string): Source branch name
  • target_branch (string, optional): Target branch (default: "main")
  • title (string, optional): MR title
  • description (string, optional): MR description
  • draft (boolean, optional): Create as draft (default: true)

Example:

{
  "project_id": 42,
  "source_branch": "ai-fix/PROJ-123",
  "title": "AI Fix: Bug in authentication",
  "draft": true
}

update_issue_status

Update Jira issue status and add comments.

Parameters:

  • issue_key (string): Jira issue key
  • status (string): New status (e.g., "In Review", "Done")
  • comment (string, optional): Comment to add with status change

Example:

{
  "issue_key": "PROJ-123",
  "status": "In Review",
  "comment": "AI-generated fix created and ready for review"
}

sre_ai_workflow

Complete SRE AI workflow: fetch tagged issues, create fixes, and update status.

Parameters:

  • project_key (string): Jira project key
  • gitlab_project_id (integer): GitLab project ID
  • tags (array, optional): Tags to filter by (default: ["AI-Fix", "AutoFix"])
  • max_issues (integer, optional): Maximum issues to process (default: 5)
  • auto_merge (boolean, optional): Auto-merge approved fixes (default: false)

Example:

{
  "project_key": "PROJ",
  "gitlab_project_id": 42,
  "tags": ["AI-Fix", "security"],
  "max_issues": 3
}

Workflow Steps:

  1. Fetch issues with specified tags
  2. Analyze each issue with AI
  3. Generate and validate code fixes
  4. Create branches and commit changes
  5. Create draft merge requests
  6. Update Jira issue status to "In Review"

MCP Resources

jira://issues

Access to Jira issues in the configured project.

gitlab://projects

Access to GitLab projects and branches.

Development

Running Tests

# Install test dependencies
pip install pytest pytest-asyncio pytest-mock pytest-cov

# Run all tests
pytest

# Run with coverage
pytest --cov=. --cov-report=html

# Run specific test file
pytest tests/test_mcp_server.py

Project Structure

mcp-jira-gitlab/
├── mcp_server.py           # Main MCP server implementation
├── server.py               # Legacy FastAPI server (deprecated)
├── config.json             # Configuration file (optional)
├── requirements.txt        # Python dependencies
├── README.md              # This file
├── connectors/
│   ├── jira_client.py     # Jira API client
│   ├── gitlab_client.py   # GitLab API client
│   └── requirements.txt   # Connector dependencies
├── utils/
│   ├── error_handler.py   # Error handling utilities
│   └── config.py          # Configuration management
└── tests/
    ├── test_mcp_server.py # MCP server tests
    └── test_clients.py    # Client tests

Error Handling

The server implements comprehensive error handling:

  • Retry Mechanisms: Automatic retry with exponential backoff
  • Authentication Errors: Clear messages for credential issues
  • API Rate Limiting: Handles rate limits gracefully
  • Network Issues: Robust handling of connection problems
  • Validation: Input validation with helpful error messages

Logging

The server uses Python's logging module with configurable levels:

import logging
logging.basicConfig(level=logging.INFO)

Usage Examples

Basic Workflow

  1. Fetch Jira Issues:
# Using MCP tool
{
  "tool": "get_jira_issues",
  "arguments": {
    "jql": "project = MYPROJ AND status = 'To Do'"
  }
}
  1. Create Branch for Issue:
# Using MCP tool
{
  "tool": "create_branch_for_issue", 
  "arguments": {
    "issue_key": "MYPROJ-123",
    "project_id": 42
  }
}
  1. Add Progress Comment:
# Using MCP tool
{
  "tool": "comment_on_issue",
  "arguments": {
    "issue_key": "MYPROJ-123",
    "comment": "Development started in branch feature/MYPROJ-123-fix"
  }
}

Integration with AI Agents

This MCP server is designed to work with AI agents and LLMs. Example integration:

# Example AI agent workflow
async def handle_new_issue(issue_key, project_id):
    # 1. Get issue details
    issues = await mcp_client.call_tool("get_jira_issues", {
        "jql": f"key = {issue_key}"
    })
    
    # 2. Create branch
    result = await mcp_client.call_tool("create_branch_for_issue", {
        "issue_key": issue_key,
        "project_id": project_id
    })
    
    # 3. Add status comment
    await mcp_client.call_tool("comment_on_issue", {
        "issue_key": issue_key,
        "comment": "Automated branch creation completed"
    })

Security Considerations

  • Environment Variables: Use environment variables for production
  • Token Rotation: Regularly rotate API tokens
  • Network Security: Use HTTPS for all API communications
  • Access Control: Limit token permissions to minimum required
  • Logging: Avoid logging sensitive information

Troubleshooting

Common Issues

Authentication Errors:

  • Verify API tokens are correct and not expired
  • Check that email matches Jira account
  • Ensure GitLab token has required permissions

Connection Issues:

  • Verify base URLs are correct
  • Check network connectivity
  • Confirm firewall settings allow HTTPS traffic

Permission Errors:

  • Ensure Jira user has project access
  • Verify GitLab token has repository permissions
  • Check project visibility settings

Debug Mode

Enable debug logging:

import logging
logging.basicConfig(level=logging.DEBUG)

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite
  6. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For issues and questions:

  1. Check the troubleshooting section
  2. Review existing GitHub issues
  3. Create a new issue with detailed information

Changelog

v1.0.0

  • Initial MCP server implementation
  • Jira and GitLab integration
  • Comprehensive error handling
  • Full test coverage
  • Documentation and examples

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选