Jira MCP Integration

Jira MCP Integration

Enables AI agents to interact with Jira Cloud through the REST API, supporting project management, issue operations (create, read, update, delete), JQL search, task assignments, and status transitions.

Category
访问服务器

README

🔌 Jira MCP Integration

Cursor AI and other agents write amazing code. In enterprises, tasks are given in instruments like Jira, GitHub Issues, Azure DevOps. AI needs access to such instruments.

This open-source solution helps AI agents work with Jira data.

🌐 Public Instance

Available at https://jira-mcp.koveh.com

Just provide your Jira credentials. We don't store any data.

Architecture

┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│   AI Agent      │────▶│   MCP Server    │────▶│   Jira Cloud    │
│  (Cursor/etc)   │◀────│   jira-mcp      │◀────│   REST API      │
└─────────────────┘     └─────────────────┘     └─────────────────┘

Features

  • ✅ Get list of projects
  • ✅ Get list of tasks with details
  • ✅ Get specific task with descriptions
  • ✅ Create new tickets
  • ✅ Update existing tickets
  • ✅ Delete tickets
  • ✅ Search using JQL
  • ✅ Assign tasks to users
  • ✅ Transition task status

Quick Start

Option 1: Use Public Instance

Go to https://jira-mcp.koveh.com and connect with your Jira credentials.

Option 2: Run with Docker

git clone https://github.com/Koveh/jira-mcp.git
cd jira-mcp
docker-compose up -d

Access at http://localhost:4200

Option 3: Run Locally

git clone https://github.com/Koveh/jira-mcp.git
cd jira-mcp
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install -r requirements.txt
python http_server.py

Get Jira API Token

  1. Go to https://id.atlassian.com/manage-profile/security/api-tokens
  2. Click "Create API token"
  3. Copy the token

Usage

Add to Cursor IDE (Local MCP)

  1. Clone and set up virtual environment:
git clone https://github.com/Koveh/jira-mcp.git
cd jira-mcp

# Create virtual environment (required for mcp package)
python3 -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
  1. Get your Jira API token from: https://id.atlassian.com/manage-profile/security/api-tokens

  2. Add to ~/.cursor/mcp.json (macOS/Linux) or %USERPROFILE%\.cursor\mcp.json (Windows):

{
  "mcpServers": {
    "jira": {
      "command": "/full/path/to/jira-mcp/venv/bin/python",
      "args": ["/full/path/to/jira-mcp/mcp_server.py"],
      "env": {
        "JIRA_BASE_URL": "https://your-domain.atlassian.net",
        "JIRA_EMAIL": "your-email@example.com",
        "JIRA_API_TOKEN": "your-api-token-from-step-2"
      }
    }
  }
}

Important: Use the full path to the Python interpreter inside the venv (venv/bin/python on Linux/macOS, venv\Scripts\python.exe on Windows). This ensures the mcp package is available.

  1. Restart Cursor (Cmd/Ctrl+Shift+P → "Developer: Reload Window")

You'll have these tools available:

Tool Description
jira_connect Connect to Jira instance
jira_get_projects List all projects
jira_get_issues Get issues from project
jira_get_issue Get specific issue details
jira_create_issue Create new issue
jira_update_issue Update existing issue
jira_delete_issue Delete issue
jira_search Search with JQL
jira_get_current_user Get current user info

REST API Usage

# 1. Connect and get token
curl -X POST https://jira-mcp.koveh.com/api/connect \
  -H "Content-Type: application/json" \
  -d '{
    "base_url": "https://your-domain.atlassian.net",
    "email": "your-email@example.com",
    "api_token": "your-api-token"
  }'

# Response includes token for subsequent requests
# {"status": "connected", "token": "eyJ...", ...}

# 2. Use token for API calls
curl https://jira-mcp.koveh.com/api/projects \
  -H "Authorization: Bearer YOUR_TOKEN"

# 3. Create issue
curl -X POST https://jira-mcp.koveh.com/api/issues \
  -H "Authorization: Bearer YOUR_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{"project": "PROJ", "summary": "New task"}'

CLI Usage

export JIRA_BASE_URL=https://your-domain.atlassian.net
export JIRA_EMAIL=your-email@example.com
export JIRA_API_TOKEN=your-api-token

python cli.py whoami                    # Show current user
python cli.py projects                  # List projects
python cli.py list PROJ                 # List issues
python cli.py get PROJ-123              # Get issue details
python cli.py create PROJ "Summary"     # Create issue
python cli.py update PROJ-123 -s "New"  # Update issue
python cli.py delete PROJ-123           # Delete issue
python cli.py search "status='Done'"    # Search with JQL

Python Client

from jira_client import JiraClient, JiraConfig

config = JiraConfig(
    base_url="https://your-domain.atlassian.net",
    email="your-email@example.com",
    api_token="your-api-token"
)

client = JiraClient(config)

# Get projects
projects = client.get_all_projects()

# Create issue
issue = client.create_issue("PROJ", "Summary", "Description")

# Search
results = client.search_issues("status = 'In Progress'")

API Endpoints

Method Endpoint Description
GET /health Health check
POST /api/connect Connect and get token
GET /api/user Get current user
GET /api/projects List all projects
GET /api/issues?project=KEY Get project issues
GET /api/issue/KEY Get issue details
POST /api/issues Create issue
PUT /api/issue/KEY Update issue
DELETE /api/issue/KEY Delete issue
GET /api/search?jql=... Search with JQL

Project Structure

jira-mcp/
├── jira_client.py      # Core Jira API wrapper
├── mcp_server.py       # MCP server (stdio transport)
├── http_server.py      # HTTP/REST server
├── cli.py              # Command-line interface
├── Dockerfile          # Docker image
├── docker-compose.yml  # Docker Compose config
├── requirements.txt    # Python dependencies
├── examples/           # Usage examples
│   ├── cursor_mcp_config.json
│   └── api_usage.sh
└── tests/              # Test scripts
    ├── test_jira.py
    └── demo.py

Self-Hosting with Docker

# Build and run
docker-compose up -d

# Or manually
docker build -t jira-mcp .
docker run -d -p 4200:4200 --name jira-mcp jira-mcp

With nginx reverse proxy

server {
    server_name jira-mcp.yourdomain.com;
    
    location / {
        proxy_pass http://127.0.0.1:4200;
        proxy_http_version 1.1;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
}

SSL with Certbot

certbot --nginx -d jira-mcp.yourdomain.com

Security

  • 🔒 We don't store any credentials or data
  • 🔑 Credentials are only used for direct Jira API calls
  • 📤 Use API tokens (not passwords)
  • 🔄 Tokens can be revoked anytime at id.atlassian.com

License

MIT

Author

DHW Team - koveh.com


Made with ❤️ for the AI-powered development community

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选