
Jira MCP Server
A production-ready server that automatically exposes your entire Jira instance through the Model Context Protocol, allowing seamless interaction with Jira's API features including issue management, project administration, and user management.
README
Jira MCP Server
A production-ready Jira MCP server using FastMCP 2.0's OpenAPI integration. Automatically exposes your entire Jira instance through the Model Context Protocol (MCP) with zero configuration overhead.
Features
- 🚀 Zero-maintenance OpenAPI integration - Automatically generates MCP tools from Jira's official API specification
- 🔐 Secure authentication - Uses Jira API tokens with environment variable support
- 🌐 Multiple transports - Support for stdio, HTTP, and SSE protocols
- ⚡ Fast and lightweight - Minimal overhead with async HTTP client
- 🔧 Production-ready - Type-safe, well-tested, and follows security best practices
- 📝 Self-documenting - All Jira API endpoints automatically become available as MCP tools
Quick Start
1. Installation
# Clone and install
git clone <repository-url>
cd jira_mcp
uv sync
2. Setup Jira API Token
- Go to Atlassian Account Settings
- Create an API token
- Note your Jira instance URL (e.g.,
https://yourcompany.atlassian.net
)
3. Set Environment Variables
export JIRA_BASE_URL="https://yourcompany.atlassian.net"
export JIRA_API_USER="your-email@company.com"
export JIRA_API_TOKEN="your-api-token"
4. Run the Server
# Default configuration (stdio transport)
jira-mcp
# Or with custom transport
jira-mcp --transport http --port 8080
How It Works
The server automatically:
- Downloads Jira's official OpenAPI specification
- Generates MCP tools for every Jira API endpoint
- Authenticates requests using your API token
- Exposes your entire Jira instance through MCP
This means you get instant access to:
- Issue management (create, update, search, transition)
- Project administration
- User and permission management
- Dashboards and filters
- Webhooks and automation
- And every other Jira Cloud API feature!
Configuration
Environment Variables
Variable | Required | Default | Description |
---|---|---|---|
JIRA_BASE_URL |
✅ | - | Your Jira instance URL (e.g., https://company.atlassian.net ) |
JIRA_API_USER |
✅ | - | Your Jira username/email address |
JIRA_API_TOKEN |
✅ | - | Your Jira API token |
JIRA_TIMEOUT |
❌ | 30 |
HTTP timeout in seconds |
MCP_TRANSPORT |
❌ | stdio |
Transport method (stdio , http , sse ) |
MCP_PORT |
❌ | 8000 |
Port for HTTP/SSE transports |
MCP_LOG_LEVEL |
❌ | INFO |
Logging level (DEBUG , INFO , WARNING , ERROR ) |
Command Line Options
jira-mcp [OPTIONS]
Options:
--transport {stdio,http,sse} Transport method (overrides MCP_TRANSPORT env var)
--port PORT Port for HTTP/SSE transport (overrides MCP_PORT env var)
--version Show version and exit
--help Show help message
Integration with MCP Clients
Claude Desktop (Docker - Recommended)
Option 1: Using pre-built Docker image (easiest)
{
"mcpServers": {
"jira": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"--env", "JIRA_BASE_URL=https://yourcompany.atlassian.net",
"--env", "JIRA_API_USER=your-email@company.com",
"--env", "JIRA_API_TOKEN=your-api-token",
"ghcr.io/brukhabtu/jira-mcp:latest"
]
}
}
}
Option 2: Using environment variables (more secure)
Set your credentials in your shell profile (.bashrc
, .zshrc
, etc.):
export JIRA_BASE_URL="https://yourcompany.atlassian.net"
export JIRA_API_USER="your-email@company.com"
export JIRA_API_TOKEN="your-api-token"
Then use this config:
{
"mcpServers": {
"jira": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"--env", "JIRA_BASE_URL",
"--env", "JIRA_API_USER",
"--env", "JIRA_API_TOKEN",
"ghcr.io/brukhabtu/jira-mcp:latest"
]
}
}
}
Option 3: Local installation (if you prefer)
# Install with uv
git clone https://github.com/brukhabtu/jira-mcp.git
cd jira-mcp
uv sync
uv pip install -e .
{
"mcpServers": {
"jira": {
"command": "jira-mcp",
"env": {
"JIRA_BASE_URL": "https://yourcompany.atlassian.net",
"JIRA_API_USER": "your-email@company.com",
"JIRA_API_TOKEN": "your-api-token"
}
}
}
}
Advanced Docker Usage
Running as HTTP Service (for multiple clients)
# Run as background service
docker run -d --name jira-mcp \
-p 8000:8000 \
-e JIRA_BASE_URL=https://yourcompany.atlassian.net \
-e JIRA_API_USER=your-email@company.com \
-e JIRA_API_TOKEN=your-api-token \
-e MCP_TRANSPORT=http \
--restart unless-stopped \
ghcr.io/brukhabtu/jira-mcp:latest
# Connect via HTTP from any MCP client
# Server will be available at http://localhost:8000
Other MCP Clients
The Docker image supports all MCP transport protocols:
- stdio: For local desktop applications (Claude Desktop, etc.)
- HTTP: For web applications and remote clients
- SSE: For real-time web applications
Example HTTP usage:
# Start HTTP server
docker run -p 8000:8000 \
-e MCP_TRANSPORT=http \
-e JIRA_BASE_URL=https://yourcompany.atlassian.net \
-e JIRA_API_USER=your-email@company.com \
-e JIRA_API_TOKEN=your-api-token \
ghcr.io/brukhabtu/jira-mcp:latest
# Connect from any HTTP MCP client to http://localhost:8000
Docker
Build and run with Docker:
# Build the image
docker build -t jira-mcp .
# Run with stdio transport (default)
docker run -e JIRA_BASE_URL=https://your-domain.atlassian.net \
-e JIRA_API_USER=your-email@example.com \
-e JIRA_API_TOKEN=your-api-token \
jira-mcp
# Run with HTTP transport
docker run -p 8000:8000 \
-e JIRA_BASE_URL=https://your-domain.atlassian.net \
-e JIRA_API_USER=your-email@example.com \
-e JIRA_API_TOKEN=your-api-token \
-e MCP_TRANSPORT=http \
jira-mcp
# Use pre-built image from GitHub Container Registry
docker run ghcr.io/brukhabtu/jira-mcp:latest
Development
Setup
# Install dependencies
uv sync
# Run all tests (55 unit and integration tests)
uv run pytest
# Run only unit tests
uv run pytest tests/unit/
# Run only integration tests
uv run pytest tests/integration/
# Type checking (mypy strict mode)
uv run mypy jira_mcp/
# Code formatting and linting
uv run ruff check .
uv run ruff format .
Architecture
jira_mcp/config.py
: Pydantic models with environment variable loadingjira_mcp/auth.py
: HTTP client with Jira Basic Authjira_mcp/server.py
: FastMCP integration with OpenAPI spec fetchingjira_mcp/__main__.py
: CLI interface with environment-based configuration
Testing
The project includes 41 unit tests organized in tests/unit/
covering:
- Configuration validation and edge cases
- Authentication and HTTP client behavior
- Server initialization and error handling
- Environment variable parsing and type conversion
Troubleshooting
Common Issues
"Configuration error" on startup: Check that all required environment variables (JIRA_BASE_URL
, JIRA_API_USER
, JIRA_API_TOKEN
) are set.
Authentication errors: Verify your API token is correct and your email matches your Jira account.
Connection timeout: Check your JIRA_BASE_URL
is correct and accessible. Increase JIRA_TIMEOUT
if needed.
Claude Desktop not finding server: Ensure environment variables are available to GUI applications (may require restart or launchctl setenv
on macOS).
Getting Help
- Check the CLAUDE.md file for development guidance
- Review test files for usage examples
- Run
jira-mcp --help
for command line options
Security
- API tokens are stored in environment variables, never in code or config files
- All HTTP requests use TLS encryption
- No sensitive data is logged or exposed
- Follows OAuth 2.0 and Atlassian security best practices
License
MIT
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。