Jira MCP Server

Jira MCP Server

A Model Context Protocol server that provides access to JIRA issue data stored in CSV files, enabling AI assistants to query, filter, and analyze JIRA issues through standardized tools.

Category
访问服务器

README

Jira MCP Server

A Model Context Protocol (MCP) server that provides access to JIRA issue data stored in CSV files exported from Snowflake. This server enables AI assistants to query, filter, and analyze JIRA issues through a standardized interface.

Overview

This MCP server reads JIRA data from CSV files and provides three main tools for interacting with the data:

  • list_issues - Query and filter JIRA issues with various criteria
  • get_issue_details - Get detailed information for a specific issue by key
  • get_project_summary - Get statistics and summaries for all projects

Features

Data Sources

The server reads from the following CSV files in the Snowflake_CSV/ directory:

  • JIRA_ISSUE_NON_PII.csv - Main issue data (non-personally identifiable information)
  • JIRA_LABEL_RHAI.csv - Issue labels and tags
  • JIRA_COMPONENT_RHAI.csv - Component information
  • JIRA_COMMENT_NON_PII.csv - Issue comments (non-PII)

Available Tools

1. List Issues (list_issues)

Query JIRA issues with optional filtering:

  • Project filtering - Filter by project key (e.g., 'SMQE', 'OSIM')
  • Issue type filtering - Filter by issue type ID
  • Status filtering - Filter by issue status ID
  • Priority filtering - Filter by priority ID
  • Text search - Search in summary and description fields
  • Result limiting - Control number of results returned (default: 50)

2. Get Issue Details (get_issue_details)

Retrieve comprehensive information for a specific JIRA issue by its key (e.g., 'SMQE-1280'), including:

  • Basic issue information (summary, description, status, priority)
  • Timestamps (created, updated, due date, resolution date)
  • Time tracking (original estimate, current estimate, time spent)
  • Metadata (votes, watches, environment, components)
  • Associated labels

3. Get Project Summary (get_project_summary)

Generate statistics across all projects:

  • Total issue counts per project
  • Status distribution per project
  • Priority distribution per project
  • Overall statistics

Prerequisites

  • Python 3.8+
  • Podman or Docker
  • CSV data files in Snowflake_CSV/ directory

Installation & Setup

Local Development

  1. Clone the repository:
git clone <repository-url>
cd jira-mcp-snowflake
  1. Install dependencies:
pip install -r requirements.txt
  1. Ensure CSV data files are present in Snowflake_CSV/ directory

  2. Run the server:

python mcp_server.py

Container Deployment

Building locally

To build the container image locally using Podman, run:

podman build -t jira-mcp-snowflake:latest .

This will create a local image named jira-mcp-snowflake:latest that you can use to run the server.

Running with Podman or Docker

Example configuration for running with Podman:

{
  "mcpServers": {
    "jira-mcp-snowflake": {
      "command": "podman",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e", "MCP_TRANSPORT=stdio",
        "localhost/jira-mcp-snowflake:latest"
      ]
    }
  }
}

VS Code Continue Integration

Example configuration to add to VS Code Continue:

{
  "experimental": {
    "modelContextProtocolServers": [
      {
        "name": "jira-mcp-snowflake",
        "transport": {
          "type": "stdio",
          "command": "podman",
          "args": [
            "run",
            "-i",
            "--rm",
            "-e", "MCP_TRANSPORT=stdio",
            "localhost/jira-mcp-snowflake:latest"
          ]
        }
      }
    ]
  }
}

Usage Examples

Query Issues by Project

# List all issues from the SMQE project
result = await list_issues(project="SMQE", limit=10)

Search Issues by Text

# Search for issues containing "authentication" in summary or description
result = await list_issues(search_text="authentication", limit=20)

Get Specific Issue Details

# Get detailed information for a specific issue
result = await get_issue_details(issue_key="SMQE-1280")

Get Project Overview

# Get statistics for all projects
result = await get_project_summary()

Environment Variables

  • MCP_TRANSPORT - Transport protocol for MCP communication (default: "stdio")

Data Privacy

This server is designed to work with non-personally identifiable information (non-PII) data only. The CSV files should be sanitized to remove any sensitive personal information before use.

Dependencies

  • httpx - HTTP client library
  • fastmcp - Fast MCP server framework
  • aiofiles - Asynchronous file operations

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选