JIRA Zephyr MCP Server
Enables comprehensive test management with JIRA's Zephyr system, allowing users to create and manage test plans, execute test cycles, track progress, and generate reports through natural language.
README
JIRA Zephyr MCP Server
A Model Context Protocol (MCP) server that provides comprehensive integration with JIRA's Zephyr test management system. This server enables seamless test management operations including creating test plans, managing test cycles, executing tests, and reading JIRA issues.
Features
Core Capabilities
- Test Plan Management: Create and list test plans in Zephyr
- Test Cycle Management: Create and manage test execution cycles
- JIRA Integration: Read JIRA issue details and metadata
- Test Execution: Update test execution results and status
- Progress Tracking: Monitor test execution progress and statistics
- Issue Linking: Associate test cases with JIRA issues
- Reporting: Generate comprehensive test execution reports
Available Tools
- read_jira_issue - Retrieve JIRA issue information
- create_test_plan - Create new test plans in Zephyr
- list_test_plans - Browse existing test plans
- create_test_cycle - Create test execution cycles
- list_test_cycles - View test cycles with execution status
- execute_test - Update test execution results
- get_test_execution_status - Check test execution progress
- link_tests_to_issues - Associate tests with JIRA issues
- generate_test_report - Create test execution reports
Prerequisites
- Node.js 18.0.0 or higher
- JIRA instance with Zephyr Scale or Zephyr Squad
- Valid JIRA API credentials
- Zephyr API access token
Integration with Cursor
Clone the project, then add the following to your Cursor configuration:
{
"mcpServers": {
"jira-zephyr": {
"command": "node",
"args": ["/path/to/jira-zephyr-mcp/dist/index.js"],
"env": {
"JIRA_BASE_URL": "https://your-domain.atlassian.net",
"JIRA_USERNAME": "your-email@company.com",
"JIRA_API_TOKEN": "your-jira-api-token",
"ZEPHYR_API_TOKEN": "your-zephyr-api-token"
}
}
}
}
Using Docker
Alternatively, you can configure Cursor to run the MCP server in Docker (ensure the image is built first):
{
"mcpServers": {
"jira-zephyr": {
"command": "docker",
"args": ["run", "--rm", "-i","-e","JIRA_BASE_URL","-e","JIRA_USERNAME","-e","JIRA_API_TOKEN","-e","ZEPHYR_API_TOKEN", "jira-zephyr-mcp"],
"env": {
"JIRA_BASE_URL": "https://your-domain.atlassian.net",
"JIRA_USERNAME": "your-email@company.com",
"JIRA_API_TOKEN": "your-jira-api-token",
"ZEPHYR_API_TOKEN": "your-zephyr-api-token"
}
}
}
}
Installation (for development)
- Clone the repository:
git clone https://github.com/your-username/jira-zephyr-mcp.git
cd jira-zephyr-mcp
- Install dependencies:
npm install
- Build the project:
npm run build
Configuration
- Copy the example environment file:
cp .env.example .env
- Configure your JIRA and Zephyr credentials in
.env:
JIRA_BASE_URL=https://your-domain.atlassian.net
JIRA_USERNAME=your-email@company.com
JIRA_API_TOKEN=your-jira-api-token
ZEPHYR_API_TOKEN=your-zephyr-api-token
Getting API Tokens
JIRA API Token
- Go to Atlassian Account Settings
- Navigate to Security → API tokens
- Create a new API token
- Copy the token to your
.envfile
Zephyr API Token
- In JIRA, go to Apps → Zephyr Scale → API Access Tokens
- Generate a new token
- Copy the token to your
.envfile
Usage
Development
npm run dev
Production
npm start
Running with Docker
You can containerize and run the MCP server using Docker.
Prerequisites
- Docker installed on your system
- The project cloned locally
Building the Docker Image
- Navigate to the project directory:
cd /path/to/jira-zephyr-mcp
- Build the Docker image:
docker build -t jira-zephyr-mcp:latest .
You can specify a different tag if desired, e.g., -t jira-zephyr-mcp:v1.0.0.
Running the Container
- Run the container with required environment variables:
docker run -d --name jira-zephyr-mcp \
-e JIRA_BASE_URL=https://your-domain.atlassian.net \
-e JIRA_USERNAME=your-email@company.com \
-e JIRA_API_TOKEN=your-jira-api-token \
-e ZEPHYR_API_TOKEN=your-zephyr-api-token \
jira-zephyr-mcp:latest
Note: For integration with systems like Cursor, use the Docker configuration shown in the 'Integration with Cursor' section above. Ensure the image is built with the desired tag that matches your Cursor config. The server communicates via stdio, so ensure your setup supports this when running in a container.
Tool Usage Examples
Reading JIRA Issues
// Read basic issue information
await readJiraIssue({ issueKey: "ABC-123" });
// Read specific fields
await readJiraIssue({
issueKey: "ABC-123",
fields: ["summary", "status", "assignee"]
});
Creating Test Plans
await createTestPlan({
name: "Release 2.0 Test Plan",
description: "Comprehensive testing for release 2.0",
projectKey: "ABC",
startDate: "2024-01-15",
endDate: "2024-01-30"
});
Managing Test Cycles
// Create a test cycle
await createTestCycle({
name: "Sprint 10 Testing",
description: "Testing for sprint 10 features",
projectKey: "ABC",
versionId: "10001",
environment: "Production"
});
// List test cycles
await listTestCycles({
projectKey: "ABC",
limit: 25
});
Test Execution
// Update test execution status
await executeTest({
executionId: "12345",
status: "PASS",
comment: "All tests passed successfully"
});
// Get execution status
await getTestExecutionStatus({ cycleId: "67890" });
Generating Reports
// Generate JSON report
await generateTestReport({
cycleId: "67890",
format: "JSON"
});
// Generate HTML report
await generateTestReport({
cycleId: "67890",
format: "HTML"
});
Error Handling
The server implements comprehensive error handling:
- Input validation using Zod schemas
- API error mapping and user-friendly messages
- Network timeout handling
- Authentication error detection
Development
Scripts
npm run build- Build the TypeScript projectnpm run dev- Run in development mode with file watchingnpm run lint- Run ESLintnpm run typecheck- Run TypeScript type checking
Project Structure
src/
├── index.ts # Main MCP server entry point
├── clients/ # API clients
│ ├── jira-client.ts # JIRA REST API client
│ └── zephyr-client.ts # Zephyr API client
├── tools/ # MCP tool implementations
│ ├── jira-issues.ts # JIRA issue tools
│ ├── test-plans.ts # Test plan management
│ ├── test-cycles.ts # Test cycle management
│ └── test-execution.ts # Test execution tools
├── types/ # TypeScript type definitions
│ ├── jira-types.ts # JIRA API types
│ └── zephyr-types.ts # Zephyr API types
└── utils/ # Utility functions
├── config.ts # Configuration management
└── validation.ts # Input validation schemas
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
Security
- Never commit API tokens or credentials to the repository
- Use environment variables for all sensitive configuration
- Regularly rotate API tokens
- Implement proper access controls in your JIRA instance
License
MIT License - see LICENSE file for details
Support
For issues and questions:
- Check the existing GitHub issues
- Create a new issue with detailed information
- Include error logs and configuration (without sensitive data)
Roadmap
- [ ] Support for Zephyr Squad (in addition to Zephyr Scale)
- [ ] Bulk test execution operations
- [ ] Advanced reporting with charts and metrics
- [ ] Test case creation and management
- [ ] Integration with CI/CD pipelines
- [ ] Custom field support for test management
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。