JIRA Zephyr MCP Server

JIRA Zephyr MCP Server

Enables comprehensive test management with JIRA's Zephyr system, allowing users to create and manage test plans, execute test cycles, track progress, and generate reports through natural language.

Category
访问服务器

README

JIRA Zephyr MCP Server

A Model Context Protocol (MCP) server that provides comprehensive integration with JIRA's Zephyr test management system. This server enables seamless test management operations including creating test plans, managing test cycles, executing tests, and reading JIRA issues.

Features

Core Capabilities

  • Test Plan Management: Create and list test plans in Zephyr
  • Test Cycle Management: Create and manage test execution cycles
  • JIRA Integration: Read JIRA issue details and metadata
  • Test Execution: Update test execution results and status
  • Progress Tracking: Monitor test execution progress and statistics
  • Issue Linking: Associate test cases with JIRA issues
  • Reporting: Generate comprehensive test execution reports

Available Tools

  1. read_jira_issue - Retrieve JIRA issue information
  2. create_test_plan - Create new test plans in Zephyr
  3. list_test_plans - Browse existing test plans
  4. create_test_cycle - Create test execution cycles
  5. list_test_cycles - View test cycles with execution status
  6. execute_test - Update test execution results
  7. get_test_execution_status - Check test execution progress
  8. link_tests_to_issues - Associate tests with JIRA issues
  9. generate_test_report - Create test execution reports

Prerequisites

  • Node.js 18.0.0 or higher
  • JIRA instance with Zephyr Scale or Zephyr Squad
  • Valid JIRA API credentials
  • Zephyr API access token

Integration with Cursor

Clone the project, then add the following to your Cursor configuration:

{
  "mcpServers": {
    "jira-zephyr": {
      "command": "node",
      "args": ["/path/to/jira-zephyr-mcp/dist/index.js"],
      "env": {
        "JIRA_BASE_URL": "https://your-domain.atlassian.net",
        "JIRA_USERNAME": "your-email@company.com",
        "JIRA_API_TOKEN": "your-jira-api-token",
        "ZEPHYR_API_TOKEN": "your-zephyr-api-token"
      }
    }
  }
}

Using Docker

Alternatively, you can configure Cursor to run the MCP server in Docker (ensure the image is built first):

{
  "mcpServers": {
    "jira-zephyr": {
      "command": "docker",
      "args": ["run", "--rm", "-i","-e","JIRA_BASE_URL","-e","JIRA_USERNAME","-e","JIRA_API_TOKEN","-e","ZEPHYR_API_TOKEN", "jira-zephyr-mcp"],
      "env": {
        "JIRA_BASE_URL": "https://your-domain.atlassian.net",
        "JIRA_USERNAME": "your-email@company.com",
        "JIRA_API_TOKEN": "your-jira-api-token",
        "ZEPHYR_API_TOKEN": "your-zephyr-api-token"
      }
    }
  }
}

Installation (for development)

  1. Clone the repository:
git clone https://github.com/your-username/jira-zephyr-mcp.git
cd jira-zephyr-mcp
  1. Install dependencies:
npm install
  1. Build the project:
npm run build

Configuration

  1. Copy the example environment file:
cp .env.example .env
  1. Configure your JIRA and Zephyr credentials in .env:
JIRA_BASE_URL=https://your-domain.atlassian.net
JIRA_USERNAME=your-email@company.com
JIRA_API_TOKEN=your-jira-api-token
ZEPHYR_API_TOKEN=your-zephyr-api-token

Getting API Tokens

JIRA API Token

  1. Go to Atlassian Account Settings
  2. Navigate to Security → API tokens
  3. Create a new API token
  4. Copy the token to your .env file

Zephyr API Token

  1. In JIRA, go to Apps → Zephyr Scale → API Access Tokens
  2. Generate a new token
  3. Copy the token to your .env file

Usage

Development

npm run dev

Production

npm start

Running with Docker

You can containerize and run the MCP server using Docker.

Prerequisites

  • Docker installed on your system
  • The project cloned locally

Building the Docker Image

  1. Navigate to the project directory:
cd /path/to/jira-zephyr-mcp
  1. Build the Docker image:
docker build -t jira-zephyr-mcp:latest .

You can specify a different tag if desired, e.g., -t jira-zephyr-mcp:v1.0.0.

Running the Container

  1. Run the container with required environment variables:
docker run -d --name jira-zephyr-mcp \
  -e JIRA_BASE_URL=https://your-domain.atlassian.net \
  -e JIRA_USERNAME=your-email@company.com \
  -e JIRA_API_TOKEN=your-jira-api-token \
  -e ZEPHYR_API_TOKEN=your-zephyr-api-token \
  jira-zephyr-mcp:latest

Note: For integration with systems like Cursor, use the Docker configuration shown in the 'Integration with Cursor' section above. Ensure the image is built with the desired tag that matches your Cursor config. The server communicates via stdio, so ensure your setup supports this when running in a container.

Tool Usage Examples

Reading JIRA Issues

// Read basic issue information
await readJiraIssue({ issueKey: "ABC-123" });

// Read specific fields
await readJiraIssue({ 
  issueKey: "ABC-123", 
  fields: ["summary", "status", "assignee"] 
});

Creating Test Plans

await createTestPlan({
  name: "Release 2.0 Test Plan",
  description: "Comprehensive testing for release 2.0",
  projectKey: "ABC",
  startDate: "2024-01-15",
  endDate: "2024-01-30"
});

Managing Test Cycles

// Create a test cycle
await createTestCycle({
  name: "Sprint 10 Testing",
  description: "Testing for sprint 10 features",
  projectKey: "ABC",
  versionId: "10001",
  environment: "Production"
});

// List test cycles
await listTestCycles({
  projectKey: "ABC",
  limit: 25
});

Test Execution

// Update test execution status
await executeTest({
  executionId: "12345",
  status: "PASS",
  comment: "All tests passed successfully"
});

// Get execution status
await getTestExecutionStatus({ cycleId: "67890" });

Generating Reports

// Generate JSON report
await generateTestReport({
  cycleId: "67890",
  format: "JSON"
});

// Generate HTML report
await generateTestReport({
  cycleId: "67890",
  format: "HTML"
});

Error Handling

The server implements comprehensive error handling:

  • Input validation using Zod schemas
  • API error mapping and user-friendly messages
  • Network timeout handling
  • Authentication error detection

Development

Scripts

  • npm run build - Build the TypeScript project
  • npm run dev - Run in development mode with file watching
  • npm run lint - Run ESLint
  • npm run typecheck - Run TypeScript type checking

Project Structure

src/
├── index.ts              # Main MCP server entry point
├── clients/              # API clients
│   ├── jira-client.ts    # JIRA REST API client
│   └── zephyr-client.ts  # Zephyr API client
├── tools/                # MCP tool implementations
│   ├── jira-issues.ts    # JIRA issue tools
│   ├── test-plans.ts     # Test plan management
│   ├── test-cycles.ts    # Test cycle management
│   └── test-execution.ts # Test execution tools
├── types/                # TypeScript type definitions
│   ├── jira-types.ts     # JIRA API types
│   └── zephyr-types.ts   # Zephyr API types
└── utils/                # Utility functions
    ├── config.ts         # Configuration management
    └── validation.ts     # Input validation schemas

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

Security

  • Never commit API tokens or credentials to the repository
  • Use environment variables for all sensitive configuration
  • Regularly rotate API tokens
  • Implement proper access controls in your JIRA instance

License

MIT License - see LICENSE file for details

Support

For issues and questions:

  1. Check the existing GitHub issues
  2. Create a new issue with detailed information
  3. Include error logs and configuration (without sensitive data)

Roadmap

  • [ ] Support for Zephyr Squad (in addition to Zephyr Scale)
  • [ ] Bulk test execution operations
  • [ ] Advanced reporting with charts and metrics
  • [ ] Test case creation and management
  • [ ] Integration with CI/CD pipelines
  • [ ] Custom field support for test management

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选