jlab-mcp

jlab-mcp

An MCP server that enables LLMs to execute Python code on GPU-accelerated compute nodes within SLURM-managed HPC environments. It bridges local clients to remote clusters by launching JupyterLab sessions via SLURM jobs to facilitate high-performance notebook-based computation.

Category
访问服务器

README

jlab-mcp

A Model Context Protocol (MCP) server that enables Claude Code to execute Python code on GPU compute nodes via JupyterLab running on a SLURM cluster.

Inspired by and adapted from goodfire-ai/scribe, which provides notebook-based code execution for Claude. This project adapts that approach for HPC/SLURM environments where GPU resources are allocated via job schedulers.

Architecture

Claude Code (login node)
    ↕ stdio
MCP Server (login node)
    ↕ HTTP/WebSocket
JupyterLab (compute node, via sbatch)   ← one SLURM job, many kernels
    ↕
IPython Kernels (GPU access)

Login and compute nodes share a filesystem. The SLURM job is managed separately from the MCP server — you start it with jlab-mcp start and it keeps running across Claude Code sessions. All sessions create separate kernels on this shared server.

Setup

# Install (no git clone needed)
uv tool install git+https://github.com/kdkyum/jlab-mcp.git

The SLURM job activates .venv in the current working directory. Set up your project's venv on the shared filesystem with the compute dependencies:

cd /shared/fs/my-project
uv venv
uv pip install jupyterlab ipykernel matplotlib numpy
uv pip install torch --index-url https://download.pytorch.org/whl/cu126  # GPU support

Usage

1. Start the compute node

In a separate terminal, start the SLURM job:

jlab-mcp start

This submits the job and waits until JupyterLab is ready:

SLURM job 24215408 submitted, waiting in queue...
Job running on ravg1011, JupyterLab starting...
JupyterLab ready at http://ravg1011:18432

2. Use Claude Code

In another terminal, start Claude Code. The MCP server connects to the running JupyterLab automatically.

3. Stop when done

jlab-mcp stop

CLI Commands

Command Description
jlab-mcp start Submit SLURM job and wait until JupyterLab is ready
jlab-mcp stop Cancel the SLURM job
jlab-mcp wait Poll status (check from another terminal)
jlab-mcp status Print server state, active kernels, and GPU memory
jlab-mcp Run MCP server (used by Claude Code, not run manually)

The SLURM job survives Claude Code restarts. You only need to run jlab-mcp start once per work session.

Configuration

All settings are configurable via environment variables. No values are hardcoded for a specific cluster.

Environment Variable Default Description
JLAB_MCP_DIR ~/.jlab-mcp Base working directory
JLAB_MCP_NOTEBOOK_DIR ./notebooks Notebook storage (relative to cwd)
JLAB_MCP_LOG_DIR ~/.jlab-mcp/logs SLURM job logs
JLAB_MCP_CONNECTION_DIR ~/.jlab-mcp/connections Connection info files
JLAB_MCP_SLURM_PARTITION gpu SLURM partition
JLAB_MCP_SLURM_GRES gpu:1 SLURM generic resource
JLAB_MCP_SLURM_CPUS 4 CPUs per task
JLAB_MCP_SLURM_MEM 32000 Memory in MB
JLAB_MCP_SLURM_TIME 4:00:00 Wall clock time limit
JLAB_MCP_SLURM_MODULES (empty) Space-separated modules to load (e.g. cuda/12.6)
JLAB_MCP_PORT_MIN 18000 Port range lower bound
JLAB_MCP_PORT_MAX 19000 Port range upper bound

Example: Cluster with A100 GPUs and CUDA module

export JLAB_MCP_SLURM_PARTITION=gpu1
export JLAB_MCP_SLURM_GRES=gpu:a100:1
export JLAB_MCP_SLURM_CPUS=18
export JLAB_MCP_SLURM_MEM=125000
export JLAB_MCP_SLURM_TIME=1-00:00:00
export JLAB_MCP_SLURM_MODULES="cuda/12.6"

Claude Code Integration

Add to ~/.claude.json or project .mcp.json:

{
  "mcpServers": {
    "jlab-mcp": {
      "command": "jlab-mcp",
      "env": {
        "JLAB_MCP_SLURM_PARTITION": "gpu1",
        "JLAB_MCP_SLURM_GRES": "gpu:a100:1",
        "JLAB_MCP_SLURM_MODULES": "cuda/12.6"
      }
    }
  }
}

The MCP server uses the working directory to find .venv for the compute node. Claude Code launches from your project directory, so it picks up the right venv automatically.

MCP Tools

Tool Description
start_new_session Start kernel on shared server, create empty notebook
start_session_resume_notebook Resume existing notebook (re-executes all cells to restore state)
start_session_continue_notebook Fork notebook with fresh kernel (no re-execution)
execute_code Run Python code, append cell to notebook (returns text + images)
edit_cell Edit and re-execute a cell (supports negative indexing)
add_markdown Add markdown cell to notebook
execute_scratch Run code on a utility kernel (no notebook save, no session state)
shutdown_session Stop kernel (SLURM job stays alive for other sessions)

Resource: jlab-mcp://server/status — returns shared server info and active sessions.

Session Lifecycle

  • start_new_session: Creates a new kernel on the shared JupyterLab
  • shutdown_session: Kills the kernel only. The SLURM job keeps running.
  • SLURM job dies: Next tool call returns an error. Run jlab-mcp start to restart.

Testing

# Unit tests (no SLURM needed)
uv run python -m pytest tests/test_slurm.py tests/test_notebook.py tests/test_image_utils.py -v

# Integration tests (requires running `jlab-mcp start` first)
uv run python -m pytest tests/test_tools.py -v -s --timeout=600

Acknowledgments

This project is inspired by goodfire-ai/scribe, which provides MCP-based notebook code execution for Claude. The tool interface design, image resizing approach, and notebook management patterns are adapted from scribe for use on HPC/SLURM clusters.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选